衰老对小鼠毛囊和组织干细胞特性的影响

IF 2.6 Q2 Medicine Mechanisms of Development Pub Date : 2020-09-01 DOI:10.1016/j.mod.2020.103630
Kimihiko Sugaya
{"title":"衰老对小鼠毛囊和组织干细胞特性的影响","authors":"Kimihiko Sugaya","doi":"10.1016/j.mod.2020.103630","DOIUrl":null,"url":null,"abstract":"<div><p>The aging process is closely related to the organization of stem cells, and skin is thought to be one of the suitable models for its investigation. We have focused on the murine hair follicle to verify this idea because it shows typical aging phenotypes and is a self-renewing structure reconstituted by its own stem cells. However, how changes in the characteristics of the hair follicle and in the behavior of tissue stem cells in the natural hair cycle occur are not fully understood. We investigated the number, morphology and pigmentation of hair follicles in anagen phases during the aging process. In addition, stem cells for keratinocytes and melanocytes were examined to evaluate the correlation between changes in skin characteristics and the stem cells. The remarkable changes caused by aging appeared to be the significant increase in qualitative phenotypes such as curved hair follicles and white hair. A significant difference between the number of keratinocyte and melanocyte stem cells in the hair bulge region is likely to be involved in these changes. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration and for clarifying the mechanisms of age-related phenotypes.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"163 ","pages":"Article 103630"},"PeriodicalIF":2.6000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2020.103630","citationCount":"2","resultStr":"{\"title\":\"Changes in characteristics of murine hair follicles and tissue stem cells by aging\",\"authors\":\"Kimihiko Sugaya\",\"doi\":\"10.1016/j.mod.2020.103630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aging process is closely related to the organization of stem cells, and skin is thought to be one of the suitable models for its investigation. We have focused on the murine hair follicle to verify this idea because it shows typical aging phenotypes and is a self-renewing structure reconstituted by its own stem cells. However, how changes in the characteristics of the hair follicle and in the behavior of tissue stem cells in the natural hair cycle occur are not fully understood. We investigated the number, morphology and pigmentation of hair follicles in anagen phases during the aging process. In addition, stem cells for keratinocytes and melanocytes were examined to evaluate the correlation between changes in skin characteristics and the stem cells. The remarkable changes caused by aging appeared to be the significant increase in qualitative phenotypes such as curved hair follicles and white hair. A significant difference between the number of keratinocyte and melanocyte stem cells in the hair bulge region is likely to be involved in these changes. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration and for clarifying the mechanisms of age-related phenotypes.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"163 \",\"pages\":\"Article 103630\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2020.103630\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477320300356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477320300356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

衰老过程与干细胞的组织密切相关,皮肤被认为是其研究的合适模型之一。我们将重点放在小鼠毛囊上验证这一观点,因为它显示出典型的衰老表型,并且是一个由自身干细胞重建的自我更新结构。然而,毛囊特征的变化和组织干细胞在自然毛发周期中的行为是如何发生的还没有完全了解。我们研究了毛发生长过程中毛囊的数量、形态和色素沉着。此外,对角质形成细胞和黑色素细胞的干细胞进行了检查,以评估皮肤特征变化与干细胞之间的相关性。衰老引起的显著变化表现为毛囊弯曲和白发等定性表型的显著增加。毛发凸起区角质细胞和黑素细胞干细胞数量的显著差异可能与这些变化有关。我们的发现可能对理解干细胞对毛发再生的作用机制和阐明年龄相关表型的机制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in characteristics of murine hair follicles and tissue stem cells by aging

The aging process is closely related to the organization of stem cells, and skin is thought to be one of the suitable models for its investigation. We have focused on the murine hair follicle to verify this idea because it shows typical aging phenotypes and is a self-renewing structure reconstituted by its own stem cells. However, how changes in the characteristics of the hair follicle and in the behavior of tissue stem cells in the natural hair cycle occur are not fully understood. We investigated the number, morphology and pigmentation of hair follicles in anagen phases during the aging process. In addition, stem cells for keratinocytes and melanocytes were examined to evaluate the correlation between changes in skin characteristics and the stem cells. The remarkable changes caused by aging appeared to be the significant increase in qualitative phenotypes such as curved hair follicles and white hair. A significant difference between the number of keratinocyte and melanocyte stem cells in the hair bulge region is likely to be involved in these changes. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration and for clarifying the mechanisms of age-related phenotypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanisms of Development
Mechanisms of Development 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
12.4 weeks
期刊介绍: Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology. Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology. Areas of particular interest include: Cell and tissue morphogenesis Cell adhesion and migration Cell shape and polarity Biomechanics Theoretical modelling of cell and developmental biology Quantitative biology Stem cell biology Cell differentiation Cell proliferation and cell death Evo-Devo Membrane traffic Metabolic regulation Organ and organoid development Regeneration Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.
期刊最新文献
Editorial Board Publisher's note Outside Front Cover Regulatory functions of gga-miR-218 in spermatogonial stem cells meiosis by targeting Stra8 Improved early development potence of in vitro fertilization embryos by treatment with tubacin increasing acetylated tubulin of matured porcine oocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1