用于疼痛表情分析的三维二值边缘特征表示。

Xing Zhang, Lijun Yin, Jeffrey F Cohn
{"title":"用于疼痛表情分析的三维二值边缘特征表示。","authors":"Xing Zhang,&nbsp;Lijun Yin,&nbsp;Jeffrey F Cohn","doi":"10.1109/fg.2015.7163107","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic pain expression recognition is a challenging task for pain assessment and diagnosis. Conventional 2D-based approaches to automatic pain detection lack robustness to the moderate to large head pose variation and changes in illumination that are common in real-world settings and with few exceptions omit potentially informative temporal information. In this paper, we propose an innovative 3D binary edge feature (3D-BE) to represent high-resolution 3D dynamic facial expression. To exploit temporal information, we apply a latent-dynamic conditional random field approach with the 3D-BE. The resulting pain expression detection system proves that 3D-BE represents the pain facial features well, and illustrates the potential of noncontact pain detection from 3D facial expression data.</p>","PeriodicalId":91494,"journal":{"name":"IEEE International Conference on Automatic Face & Gesture Recognition and Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/fg.2015.7163107","citationCount":"10","resultStr":"{\"title\":\"Three Dimensional Binary Edge Feature Representation for Pain Expression Analysis.\",\"authors\":\"Xing Zhang,&nbsp;Lijun Yin,&nbsp;Jeffrey F Cohn\",\"doi\":\"10.1109/fg.2015.7163107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic pain expression recognition is a challenging task for pain assessment and diagnosis. Conventional 2D-based approaches to automatic pain detection lack robustness to the moderate to large head pose variation and changes in illumination that are common in real-world settings and with few exceptions omit potentially informative temporal information. In this paper, we propose an innovative 3D binary edge feature (3D-BE) to represent high-resolution 3D dynamic facial expression. To exploit temporal information, we apply a latent-dynamic conditional random field approach with the 3D-BE. The resulting pain expression detection system proves that 3D-BE represents the pain facial features well, and illustrates the potential of noncontact pain detection from 3D facial expression data.</p>\",\"PeriodicalId\":91494,\"journal\":{\"name\":\"IEEE International Conference on Automatic Face & Gesture Recognition and Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/fg.2015.7163107\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Automatic Face & Gesture Recognition and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fg.2015.7163107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Automatic Face & Gesture Recognition and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fg.2015.7163107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/7/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

疼痛表情的自动识别是疼痛评估和诊断的一个具有挑战性的任务。传统的基于2d的自动疼痛检测方法对现实世界中常见的头部姿势变化和光照变化缺乏鲁棒性,除了少数例外情况,还会忽略潜在的信息时间信息。在本文中,我们提出了一种创新的3D二进制边缘特征(3D- be)来表示高分辨率的3D动态面部表情。为了利用时间信息,我们对3D-BE应用了潜在动态条件随机场方法。实验结果表明,3D- be能够很好地表征疼痛面部特征,说明了基于3D面部表情数据的非接触式疼痛检测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three Dimensional Binary Edge Feature Representation for Pain Expression Analysis.

Automatic pain expression recognition is a challenging task for pain assessment and diagnosis. Conventional 2D-based approaches to automatic pain detection lack robustness to the moderate to large head pose variation and changes in illumination that are common in real-world settings and with few exceptions omit potentially informative temporal information. In this paper, we propose an innovative 3D binary edge feature (3D-BE) to represent high-resolution 3D dynamic facial expression. To exploit temporal information, we apply a latent-dynamic conditional random field approach with the 3D-BE. The resulting pain expression detection system proves that 3D-BE represents the pain facial features well, and illustrates the potential of noncontact pain detection from 3D facial expression data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
16th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2021, Jodhpur, India, December 15-18, 2021 Message from the General and Program Chairs FG 2020 Proof-Theoretic Aspects of Hybrid Type-Logical Grammars Undecidability of a Newly Proposed Calculus for CatLog3 On the Computational Complexity of Head Movement and Affix Hopping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1