Yannick Hill, Ruud J R Den Hartigh, Ralf F A Cox, Peter De Jonge, Nico W Van Yperen
{"title":"预测二元团队绩效中的弹性损失。","authors":"Yannick Hill, Ruud J R Den Hartigh, Ralf F A Cox, Peter De Jonge, Nico W Van Yperen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study, we applied the dynamical systems approach to obtain novel insights into resilience losses. Dyads (n = 42) performed a lateral rhythmical pointing (Fitts) task. To induce resilience losses and transitions in performance, dyads were exposed to ascending and descending scoring scenarios. To assess changes in the complexity of the dyadic pointing performance, reflecting their resilience, we performed cross-recurrence quantification analyses. Then, we tested for temporal patterns indicating resilience losses. We applied lag 1 autocorrelations to assess critical slowing down and mean squared successive differences (MSSD) to assess critical fluctuations. Although we did not find evidence that scoring scenarios produce performance transitions across individuals, we did observe transitions in each condition. Contrary to the lag 1 autocorrelations, our results suggest that transitions in human performance are signaled by increases in the MSSD. Specifically, both positive and negative performance transitions were accompanied with increased fluctuations in performance. Furthermore, negative performance transitions were accompanied with increased fluctuations of complexity, signaling resilience losses. On the other hand, complexity remained stable for positive performance transitions. Together, these results suggest that combining information of critical fluctuations in performance and complexity can predict both positive and negative transitions in dyadic team performance.</p>","PeriodicalId":46218,"journal":{"name":"Nonlinear Dynamics Psychology and Life Sciences","volume":"24 3","pages":"327-351"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Resilience Losses in Dyadic Team Performance.\",\"authors\":\"Yannick Hill, Ruud J R Den Hartigh, Ralf F A Cox, Peter De Jonge, Nico W Van Yperen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the current study, we applied the dynamical systems approach to obtain novel insights into resilience losses. Dyads (n = 42) performed a lateral rhythmical pointing (Fitts) task. To induce resilience losses and transitions in performance, dyads were exposed to ascending and descending scoring scenarios. To assess changes in the complexity of the dyadic pointing performance, reflecting their resilience, we performed cross-recurrence quantification analyses. Then, we tested for temporal patterns indicating resilience losses. We applied lag 1 autocorrelations to assess critical slowing down and mean squared successive differences (MSSD) to assess critical fluctuations. Although we did not find evidence that scoring scenarios produce performance transitions across individuals, we did observe transitions in each condition. Contrary to the lag 1 autocorrelations, our results suggest that transitions in human performance are signaled by increases in the MSSD. Specifically, both positive and negative performance transitions were accompanied with increased fluctuations in performance. Furthermore, negative performance transitions were accompanied with increased fluctuations of complexity, signaling resilience losses. On the other hand, complexity remained stable for positive performance transitions. Together, these results suggest that combining information of critical fluctuations in performance and complexity can predict both positive and negative transitions in dyadic team performance.</p>\",\"PeriodicalId\":46218,\"journal\":{\"name\":\"Nonlinear Dynamics Psychology and Life Sciences\",\"volume\":\"24 3\",\"pages\":\"327-351\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics Psychology and Life Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics Psychology and Life Sciences","FirstCategoryId":"102","ListUrlMain":"","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
Predicting Resilience Losses in Dyadic Team Performance.
In the current study, we applied the dynamical systems approach to obtain novel insights into resilience losses. Dyads (n = 42) performed a lateral rhythmical pointing (Fitts) task. To induce resilience losses and transitions in performance, dyads were exposed to ascending and descending scoring scenarios. To assess changes in the complexity of the dyadic pointing performance, reflecting their resilience, we performed cross-recurrence quantification analyses. Then, we tested for temporal patterns indicating resilience losses. We applied lag 1 autocorrelations to assess critical slowing down and mean squared successive differences (MSSD) to assess critical fluctuations. Although we did not find evidence that scoring scenarios produce performance transitions across individuals, we did observe transitions in each condition. Contrary to the lag 1 autocorrelations, our results suggest that transitions in human performance are signaled by increases in the MSSD. Specifically, both positive and negative performance transitions were accompanied with increased fluctuations in performance. Furthermore, negative performance transitions were accompanied with increased fluctuations of complexity, signaling resilience losses. On the other hand, complexity remained stable for positive performance transitions. Together, these results suggest that combining information of critical fluctuations in performance and complexity can predict both positive and negative transitions in dyadic team performance.