在Rhoeo的Tradescantia切片中,中心粒聚集涉及富含AT和gc的异染色质组分的自我结合,受发育调节,并在分化过程中增加。

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Chromosoma Pub Date : 2020-12-01 Epub Date: 2020-07-17 DOI:10.1007/s00412-020-00740-x
Hieronim Golczyk, Arleta Limanówka, Anna Uchman-Książek
{"title":"在Rhoeo的Tradescantia切片中,中心粒聚集涉及富含AT和gc的异染色质组分的自我结合,受发育调节,并在分化过程中增加。","authors":"Hieronim Golczyk,&nbsp;Arleta Limanówka,&nbsp;Anna Uchman-Książek","doi":"10.1007/s00412-020-00740-x","DOIUrl":null,"url":null,"abstract":"<p><p>A spectacular but poorly recognized nuclear repatterning is the association of heterochromatic domains during interphase. Using base-specific fluorescence and extended-depth-of-focus imaging, we show that the association of heterochromatic pericentromeres composed of AT- and GC-rich chromatin occurs on a large scale in cycling meiotic and somatic cells and during development in ring- and bivalent-forming Tradescantia spathacea (section Rhoeo) varieties. The mean number of pericentromere AT-rich domains per root meristem nucleus was ca. half the expected diploid number in both varieties, suggesting chromosome pairing via (peri)centromeric regions. Indeed, regular pairing of AT-rich domains was observed. The AT- and GC-rich associations in differentiated cells contributed to a significant reduction of the mean number of the corresponding foci per nucleus in relation to root meristem. Within the first 10 mm of the root, the pericentromere attraction was in progress, as if it was an active process and involved both AT- and GC-rich associations. Complying with Rabl arrangement, the pericentromeres preferentially located on one nuclear pole, clustered into diverse configurations. Among them, a strikingly regular one with 5-7 ring-arranged pericentromeric AT-rich domains may be potentially engaged in chromosome positioning during mitosis. The fluorescent pattern of pachytene meiocytes and somatic nuclei suggests the existence of a highly prescribed ring/chain type of chromocenter architecture with side-by-side arranged pericentromeric regions. The dynamics of pericentromere associations together with their non-random location within nuclei was compared with nuclear architecture in other organisms, including the widely explored Arabidopsis model.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00412-020-00740-x","citationCount":"2","resultStr":"{\"title\":\"Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation.\",\"authors\":\"Hieronim Golczyk,&nbsp;Arleta Limanówka,&nbsp;Anna Uchman-Książek\",\"doi\":\"10.1007/s00412-020-00740-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A spectacular but poorly recognized nuclear repatterning is the association of heterochromatic domains during interphase. Using base-specific fluorescence and extended-depth-of-focus imaging, we show that the association of heterochromatic pericentromeres composed of AT- and GC-rich chromatin occurs on a large scale in cycling meiotic and somatic cells and during development in ring- and bivalent-forming Tradescantia spathacea (section Rhoeo) varieties. The mean number of pericentromere AT-rich domains per root meristem nucleus was ca. half the expected diploid number in both varieties, suggesting chromosome pairing via (peri)centromeric regions. Indeed, regular pairing of AT-rich domains was observed. The AT- and GC-rich associations in differentiated cells contributed to a significant reduction of the mean number of the corresponding foci per nucleus in relation to root meristem. Within the first 10 mm of the root, the pericentromere attraction was in progress, as if it was an active process and involved both AT- and GC-rich associations. Complying with Rabl arrangement, the pericentromeres preferentially located on one nuclear pole, clustered into diverse configurations. Among them, a strikingly regular one with 5-7 ring-arranged pericentromeric AT-rich domains may be potentially engaged in chromosome positioning during mitosis. The fluorescent pattern of pachytene meiocytes and somatic nuclei suggests the existence of a highly prescribed ring/chain type of chromocenter architecture with side-by-side arranged pericentromeric regions. The dynamics of pericentromere associations together with their non-random location within nuclei was compared with nuclear architecture in other organisms, including the widely explored Arabidopsis model.</p>\",\"PeriodicalId\":10248,\"journal\":{\"name\":\"Chromosoma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00412-020-00740-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosoma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00412-020-00740-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosoma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00412-020-00740-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在间期异染色质结构域的结合是一种引人注目但却鲜为人知的细胞核重组。利用碱基特异性荧光和扩展聚焦深度成像技术,研究人员发现,由富含AT和gc的染色质组成的异色中心粒在减数分裂和体细胞循环中以及在环状和二价形成的spathacea (Rhoeo)品种的发育过程中大规模发生关联。每个根分生组织核中富含at结构域的平均值约为两个品种预期二倍体数的一半,表明染色体通过(周围)着丝粒区域配对。事实上,观察到有规律的at -富结构域配对。与根分生组织相比,分化细胞中富含AT和gc的关联导致每个细胞核中相应病灶的平均数量显著减少。在根的前10mm内,中心粒吸引正在进行中,似乎这是一个活跃的过程,涉及到富含AT和gc的关联。根据Rabl排列,中心粒优先位于一个核极,聚集成不同的构型。其中,一个具有5-7个环状排列的富含at结构域的异常规则的结构域可能在有丝分裂过程中参与染色体定位。粗线减数细胞和体细胞核的荧光模式表明,存在一种高度规定的环/链型色中心结构,其周围中心点区域并排排列。本研究将胞内中心粒结合的动态及其在细胞核内的非随机位置与其他生物的核结构进行了比较,包括广泛探索的拟南芥模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation.

A spectacular but poorly recognized nuclear repatterning is the association of heterochromatic domains during interphase. Using base-specific fluorescence and extended-depth-of-focus imaging, we show that the association of heterochromatic pericentromeres composed of AT- and GC-rich chromatin occurs on a large scale in cycling meiotic and somatic cells and during development in ring- and bivalent-forming Tradescantia spathacea (section Rhoeo) varieties. The mean number of pericentromere AT-rich domains per root meristem nucleus was ca. half the expected diploid number in both varieties, suggesting chromosome pairing via (peri)centromeric regions. Indeed, regular pairing of AT-rich domains was observed. The AT- and GC-rich associations in differentiated cells contributed to a significant reduction of the mean number of the corresponding foci per nucleus in relation to root meristem. Within the first 10 mm of the root, the pericentromere attraction was in progress, as if it was an active process and involved both AT- and GC-rich associations. Complying with Rabl arrangement, the pericentromeres preferentially located on one nuclear pole, clustered into diverse configurations. Among them, a strikingly regular one with 5-7 ring-arranged pericentromeric AT-rich domains may be potentially engaged in chromosome positioning during mitosis. The fluorescent pattern of pachytene meiocytes and somatic nuclei suggests the existence of a highly prescribed ring/chain type of chromocenter architecture with side-by-side arranged pericentromeric regions. The dynamics of pericentromere associations together with their non-random location within nuclei was compared with nuclear architecture in other organisms, including the widely explored Arabidopsis model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chromosoma
Chromosoma 生物-生化与分子生物学
CiteScore
3.30
自引率
6.20%
发文量
17
审稿时长
1 months
期刊介绍: Chromosoma publishes research and review articles on the functional organization of the eukaryotic cell nucleus, with a particular emphasis on the structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis; the function and dynamics of subnuclear compartments; the nuclear envelope and nucleocytoplasmic interactions, and more. The scope of Chromosoma encompasses genetic, biophysical, molecular and cell biological studies. Average time from receipt of contributions to first decision: 22 days Publishes research and review articles on the functional organization of the eukaryotic cell nucleus Topics include structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis and more Encompasses genetic, biophysical, molecular and cell biological studies.
期刊最新文献
The passing of the last oracle: Adelaide Carpenter and Drosophila meiosis. Multifaceted role of CTCF in X-chromosome inactivation. Novel centromeric repetitive DNA elements reveal karyotype dynamics in polyploid sainfoin (Onobrychis viciifolia) CTCF is essential for proper mitotic spindle structure and anaphase segregation. Vertebrate centromere architecture: from chromatin threads to functional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1