Yu Liu , Xiaohai Zhou , Naiyue Hu , Chunyan Wang , Liqing Zhao
{"title":"P311通过与几种结合蛋白的相互作用调节远端肺发育","authors":"Yu Liu , Xiaohai Zhou , Naiyue Hu , Chunyan Wang , Liqing Zhao","doi":"10.1016/j.mod.2020.103633","DOIUrl":null,"url":null,"abstract":"<div><p>Little is known about the molecular mechanisms underlying alveolar development. P311, a putative neuronal protein originally identified for its high expression during neuronal development, has once been reported to play a potential role in distal lung generation. However, the function of this protein has been poorly understood so far. Hence, we carried out a yeast two-hybrid screen, combining with other protein-protein interaction experiments, to isolate several binding partners of P311 during lung development, which may help us explore its function. We report 7 proteins here, including Gal-1, Loxl-1 and SPARC, etc, that can interact with it. Most of them have similar spatio-temporal expression patterns to P311. In addition, it was also found that P311 could stimulate their expression indirectly in L929 mouse fibroblast. Besides, computational methods were applied to construct a P311 centered protein-protein interaction network during alveolarization, using the 7 binding partners and their protein interaction information provided by public data resources. By analyzing the structure and function of this network, the effects of P311 on lung development were further clarified and all of the bioinformatic predictions from the network could be validated by real experiments. We have found here that P311 can control lung redox events, extracellular matrix and cell cycle progression, which are all crucial to pulmonary morphogenesis. This gives us a novel thought to explore the mechanisms controlling alveolarization.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"163 ","pages":"Article 103633"},"PeriodicalIF":2.6000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2020.103633","citationCount":"2","resultStr":"{\"title\":\"P311 regulates distal lung development via its interaction with several binding proteins\",\"authors\":\"Yu Liu , Xiaohai Zhou , Naiyue Hu , Chunyan Wang , Liqing Zhao\",\"doi\":\"10.1016/j.mod.2020.103633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Little is known about the molecular mechanisms underlying alveolar development. P311, a putative neuronal protein originally identified for its high expression during neuronal development, has once been reported to play a potential role in distal lung generation. However, the function of this protein has been poorly understood so far. Hence, we carried out a yeast two-hybrid screen, combining with other protein-protein interaction experiments, to isolate several binding partners of P311 during lung development, which may help us explore its function. We report 7 proteins here, including Gal-1, Loxl-1 and SPARC, etc, that can interact with it. Most of them have similar spatio-temporal expression patterns to P311. In addition, it was also found that P311 could stimulate their expression indirectly in L929 mouse fibroblast. Besides, computational methods were applied to construct a P311 centered protein-protein interaction network during alveolarization, using the 7 binding partners and their protein interaction information provided by public data resources. By analyzing the structure and function of this network, the effects of P311 on lung development were further clarified and all of the bioinformatic predictions from the network could be validated by real experiments. We have found here that P311 can control lung redox events, extracellular matrix and cell cycle progression, which are all crucial to pulmonary morphogenesis. This gives us a novel thought to explore the mechanisms controlling alveolarization.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"163 \",\"pages\":\"Article 103633\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2020.103633\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477320300381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477320300381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
P311 regulates distal lung development via its interaction with several binding proteins
Little is known about the molecular mechanisms underlying alveolar development. P311, a putative neuronal protein originally identified for its high expression during neuronal development, has once been reported to play a potential role in distal lung generation. However, the function of this protein has been poorly understood so far. Hence, we carried out a yeast two-hybrid screen, combining with other protein-protein interaction experiments, to isolate several binding partners of P311 during lung development, which may help us explore its function. We report 7 proteins here, including Gal-1, Loxl-1 and SPARC, etc, that can interact with it. Most of them have similar spatio-temporal expression patterns to P311. In addition, it was also found that P311 could stimulate their expression indirectly in L929 mouse fibroblast. Besides, computational methods were applied to construct a P311 centered protein-protein interaction network during alveolarization, using the 7 binding partners and their protein interaction information provided by public data resources. By analyzing the structure and function of this network, the effects of P311 on lung development were further clarified and all of the bioinformatic predictions from the network could be validated by real experiments. We have found here that P311 can control lung redox events, extracellular matrix and cell cycle progression, which are all crucial to pulmonary morphogenesis. This gives us a novel thought to explore the mechanisms controlling alveolarization.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.