{"title":"多光子紫外显微镜下活体脑组织中神经递质的无标记成像。","authors":"Barun Kumar Maity, Sudipta Maiti","doi":"10.1042/NS20180132","DOIUrl":null,"url":null,"abstract":"<p><p>Visualizing small biomolecules in living cells remains a difficult challenge. Neurotransmitters provide one of the most frustrating examples of this difficulty, as our understanding of signaling in the brain critically depends on our ability to follow the neurotransmitter traffic. Last two decades have seen considerable progress in probing some of the neurotransmitters, e.g. by using false neurotransmitter mimics, chemical labeling techniques, or direct fluorescence imaging. Direct imaging harnesses the weak UV fluorescence of monoamines, which are some of the most important neurotransmitters controlling mood, memory, appetite, and learning. Here we describe the progress in imaging of these molecules using the least toxic direct excitation route found so far, namely multi-photon (MP) imaging. MP imaging of serotonin, and more recently that of dopamine, has allowed researchers to determine the location of the vesicles, follow their intracellular dynamics, probe their content, and monitor their release. Recent developments have even allowed ratiometric quantitation of the vesicular content. This review shows that MP ultraviolet (MP-UV) microscopy is an effective but underutilized method for imaging monoamine neurotransmitters in neurones and brain tissue.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"2 4","pages":"NS20180132"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/NS20180132","citationCount":"10","resultStr":"{\"title\":\"Label-free imaging of neurotransmitters in live brain tissue by multi-photon ultraviolet microscopy.\",\"authors\":\"Barun Kumar Maity, Sudipta Maiti\",\"doi\":\"10.1042/NS20180132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visualizing small biomolecules in living cells remains a difficult challenge. Neurotransmitters provide one of the most frustrating examples of this difficulty, as our understanding of signaling in the brain critically depends on our ability to follow the neurotransmitter traffic. Last two decades have seen considerable progress in probing some of the neurotransmitters, e.g. by using false neurotransmitter mimics, chemical labeling techniques, or direct fluorescence imaging. Direct imaging harnesses the weak UV fluorescence of monoamines, which are some of the most important neurotransmitters controlling mood, memory, appetite, and learning. Here we describe the progress in imaging of these molecules using the least toxic direct excitation route found so far, namely multi-photon (MP) imaging. MP imaging of serotonin, and more recently that of dopamine, has allowed researchers to determine the location of the vesicles, follow their intracellular dynamics, probe their content, and monitor their release. Recent developments have even allowed ratiometric quantitation of the vesicular content. This review shows that MP ultraviolet (MP-UV) microscopy is an effective but underutilized method for imaging monoamine neurotransmitters in neurones and brain tissue.</p>\",\"PeriodicalId\":74287,\"journal\":{\"name\":\"Neuronal signaling\",\"volume\":\"2 4\",\"pages\":\"NS20180132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1042/NS20180132\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuronal signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/NS20180132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20180132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
Label-free imaging of neurotransmitters in live brain tissue by multi-photon ultraviolet microscopy.
Visualizing small biomolecules in living cells remains a difficult challenge. Neurotransmitters provide one of the most frustrating examples of this difficulty, as our understanding of signaling in the brain critically depends on our ability to follow the neurotransmitter traffic. Last two decades have seen considerable progress in probing some of the neurotransmitters, e.g. by using false neurotransmitter mimics, chemical labeling techniques, or direct fluorescence imaging. Direct imaging harnesses the weak UV fluorescence of monoamines, which are some of the most important neurotransmitters controlling mood, memory, appetite, and learning. Here we describe the progress in imaging of these molecules using the least toxic direct excitation route found so far, namely multi-photon (MP) imaging. MP imaging of serotonin, and more recently that of dopamine, has allowed researchers to determine the location of the vesicles, follow their intracellular dynamics, probe their content, and monitor their release. Recent developments have even allowed ratiometric quantitation of the vesicular content. This review shows that MP ultraviolet (MP-UV) microscopy is an effective but underutilized method for imaging monoamine neurotransmitters in neurones and brain tissue.