{"title":"培养大鼠海马和皮质原代神经元。","authors":"Madhusmita Priyadarshini Sahu, Outi Nikkilä, Seija Lågas, Sulo Kolehmainen, Eero Castrén","doi":"10.1042/NS20180207","DOIUrl":null,"url":null,"abstract":"<p><p>Primary neurons from rodent brain hippocampus and cortex have served as important tools in biomedical research over the years. However, protocols for the preparation of primary neurons vary, which often lead to conflicting results. This report provides a robust and reliable protocol for the production of primary neuronal cultures from the cortex and hippocampus with minimal contribution of non-neuronal cells. The neurons were grown in serum-free media and maintained for several weeks without any additional feeder cells. The neuronal cultures maintained according to this protocol differentiate and by 3 weeks develop extensive axonal and dendritic branching. The cultures produced by this method show excellent reproducibility and can be used for histological, molecular and biochemical methods.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"3 2","pages":"NS20180207"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363313/pdf/","citationCount":"59","resultStr":"{\"title\":\"Culturing primary neurons from rat hippocampus and cortex.\",\"authors\":\"Madhusmita Priyadarshini Sahu, Outi Nikkilä, Seija Lågas, Sulo Kolehmainen, Eero Castrén\",\"doi\":\"10.1042/NS20180207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary neurons from rodent brain hippocampus and cortex have served as important tools in biomedical research over the years. However, protocols for the preparation of primary neurons vary, which often lead to conflicting results. This report provides a robust and reliable protocol for the production of primary neuronal cultures from the cortex and hippocampus with minimal contribution of non-neuronal cells. The neurons were grown in serum-free media and maintained for several weeks without any additional feeder cells. The neuronal cultures maintained according to this protocol differentiate and by 3 weeks develop extensive axonal and dendritic branching. The cultures produced by this method show excellent reproducibility and can be used for histological, molecular and biochemical methods.</p>\",\"PeriodicalId\":74287,\"journal\":{\"name\":\"Neuronal signaling\",\"volume\":\"3 2\",\"pages\":\"NS20180207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363313/pdf/\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuronal signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/NS20180207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20180207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
Culturing primary neurons from rat hippocampus and cortex.
Primary neurons from rodent brain hippocampus and cortex have served as important tools in biomedical research over the years. However, protocols for the preparation of primary neurons vary, which often lead to conflicting results. This report provides a robust and reliable protocol for the production of primary neuronal cultures from the cortex and hippocampus with minimal contribution of non-neuronal cells. The neurons were grown in serum-free media and maintained for several weeks without any additional feeder cells. The neuronal cultures maintained according to this protocol differentiate and by 3 weeks develop extensive axonal and dendritic branching. The cultures produced by this method show excellent reproducibility and can be used for histological, molecular and biochemical methods.