具有变异目标函数的稀疏高斯过程中的结点选择。

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2020-08-01 Epub Date: 2020-04-20 DOI:10.1002/sam.11459
Nathaniel Garton, Jarad Niemi, Alicia Carriquiry
{"title":"具有变异目标函数的稀疏高斯过程中的结点选择。","authors":"Nathaniel Garton, Jarad Niemi, Alicia Carriquiry","doi":"10.1002/sam.11459","DOIUrl":null,"url":null,"abstract":"<p><p>Sparse, knot-based Gaussian processes have enjoyed considerable success as scalable approximations of full Gaussian processes. Certain sparse models can be derived through specific variational approximations to the true posterior, and knots can be selected to minimize the Kullback-Leibler divergence between the approximate and true posterior. While this has been a successful approach, simultaneous optimization of knots can be slow due to the number of parameters being optimized. Furthermore, there have been few proposed methods for selecting the number of knots, and no experimental results exist in the literature. We propose using a one-at-a-time knot selection algorithm based on Bayesian optimization to select the number and locations of knots. We showcase the competitive performance of this method relative to optimization of knots simultaneously on three benchmark datasets, but at a fraction of the computational cost.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"13 4","pages":"324-336"},"PeriodicalIF":2.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Knot selection in sparse Gaussian processes with a variational objective function.\",\"authors\":\"Nathaniel Garton, Jarad Niemi, Alicia Carriquiry\",\"doi\":\"10.1002/sam.11459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sparse, knot-based Gaussian processes have enjoyed considerable success as scalable approximations of full Gaussian processes. Certain sparse models can be derived through specific variational approximations to the true posterior, and knots can be selected to minimize the Kullback-Leibler divergence between the approximate and true posterior. While this has been a successful approach, simultaneous optimization of knots can be slow due to the number of parameters being optimized. Furthermore, there have been few proposed methods for selecting the number of knots, and no experimental results exist in the literature. We propose using a one-at-a-time knot selection algorithm based on Bayesian optimization to select the number and locations of knots. We showcase the competitive performance of this method relative to optimization of knots simultaneously on three benchmark datasets, but at a fraction of the computational cost.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"13 4\",\"pages\":\"324-336\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11459\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/4/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11459","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

作为全高斯过程的可扩展近似值,基于节点的稀疏高斯过程取得了巨大成功。某些稀疏模型可以通过对真实后验的特定变分近似得到,可以选择结点来最小化近似后验与真实后验之间的库尔贝-莱布勒发散。虽然这是一种成功的方法,但由于需要优化的参数较多,同时优化节点的速度可能会很慢。此外,关于选择节点数量的建议方法很少,文献中也没有实验结果。我们建议使用基于贝叶斯优化的一次性节点选择算法来选择节点的数量和位置。我们在三个基准数据集上展示了该方法相对于同时优化节点的竞争性能,但计算成本仅为后者的一小部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knot selection in sparse Gaussian processes with a variational objective function.

Sparse, knot-based Gaussian processes have enjoyed considerable success as scalable approximations of full Gaussian processes. Certain sparse models can be derived through specific variational approximations to the true posterior, and knots can be selected to minimize the Kullback-Leibler divergence between the approximate and true posterior. While this has been a successful approach, simultaneous optimization of knots can be slow due to the number of parameters being optimized. Furthermore, there have been few proposed methods for selecting the number of knots, and no experimental results exist in the literature. We propose using a one-at-a-time knot selection algorithm based on Bayesian optimization to select the number and locations of knots. We showcase the competitive performance of this method relative to optimization of knots simultaneously on three benchmark datasets, but at a fraction of the computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1