{"title":"FIP200对乳腺癌免疫检查点阻断疗效的调节:一种典型的自噬独立功能。","authors":"Syn Kok Yeo, Jun-Lin Guan","doi":"10.15698/cst2020.08.229","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint blockade (ICB) has emerged as a promising therapeutic strategy because of its potential to induce durable therapeutic responses in cancer patients. However, in the case of breast cancer, its application and efficacy has been limited. As such, combinatorial therapeutic strategies that can unlock the potential of ICB in breast cancer are of urgent need. In view of that, autophagy-related proteins that play a role in the autophagic cell recycling process have been implicated in the regulation of inflammatory and anti-tumor immune responses. Accordingly, autophagy-related proteins represent a group of prospective therapeutic targets in conjunction with ICB. In our recent study (Okamoto T <i>et al.</i> (2020), Cancer Res), we developed immune-competent mouse models of breast cancer which were deficient for the autophagic function of FIP200 or had FIP200 completely ablated to test the efficacy of ICB. We showed that although FIP200's autophagy function was required for progression of PyMT-driven mammary tumors, FIP200's canonical-autophagy-independent function was responsible for increased T-cell infiltration, IFN-signaling and ICB efficacy. These findings provide genetic proof of principle for a combinatorial therapeutic strategy that involves ablation of FIP200 to improve ICB efficacy in non-responsive breast cancers.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 8","pages":"216-217"},"PeriodicalIF":4.1000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380453/pdf/","citationCount":"1","resultStr":"{\"title\":\"Regulation of immune checkpoint blockade efficacy in breast cancer by FIP200: A canonical-autophagy-independent function.\",\"authors\":\"Syn Kok Yeo, Jun-Lin Guan\",\"doi\":\"10.15698/cst2020.08.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint blockade (ICB) has emerged as a promising therapeutic strategy because of its potential to induce durable therapeutic responses in cancer patients. However, in the case of breast cancer, its application and efficacy has been limited. As such, combinatorial therapeutic strategies that can unlock the potential of ICB in breast cancer are of urgent need. In view of that, autophagy-related proteins that play a role in the autophagic cell recycling process have been implicated in the regulation of inflammatory and anti-tumor immune responses. Accordingly, autophagy-related proteins represent a group of prospective therapeutic targets in conjunction with ICB. In our recent study (Okamoto T <i>et al.</i> (2020), Cancer Res), we developed immune-competent mouse models of breast cancer which were deficient for the autophagic function of FIP200 or had FIP200 completely ablated to test the efficacy of ICB. We showed that although FIP200's autophagy function was required for progression of PyMT-driven mammary tumors, FIP200's canonical-autophagy-independent function was responsible for increased T-cell infiltration, IFN-signaling and ICB efficacy. These findings provide genetic proof of principle for a combinatorial therapeutic strategy that involves ablation of FIP200 to improve ICB efficacy in non-responsive breast cancers.</p>\",\"PeriodicalId\":36371,\"journal\":{\"name\":\"Cell Stress\",\"volume\":\"4 8\",\"pages\":\"216-217\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380453/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15698/cst2020.08.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2020.08.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
免疫检查点阻断(ICB)已成为一种有前途的治疗策略,因为它有可能在癌症患者中诱导持久的治疗反应。然而,在乳腺癌的情况下,它的应用和疗效是有限的。因此,迫切需要能够释放ICB在乳腺癌中的潜力的组合治疗策略。因此,在自噬细胞循环过程中发挥作用的自噬相关蛋白参与了炎症和抗肿瘤免疫反应的调节。因此,自噬相关蛋白与ICB一起代表了一组潜在的治疗靶点。在我们最近的研究中(Okamoto T et al. (2020), Cancer Res),我们建立了缺乏FIP200自噬功能或完全消融FIP200的乳腺癌免疫能力小鼠模型,以测试ICB的疗效。我们发现,尽管FIP200的自噬功能是pymt驱动的乳腺肿瘤进展所必需的,但FIP200的常规自噬独立功能是t细胞浸润、ifn信号传导和ICB疗效增加的原因。这些发现为包括消融FIP200以提高ICB在无反应性乳腺癌中的疗效的组合治疗策略提供了遗传学原理证明。
Regulation of immune checkpoint blockade efficacy in breast cancer by FIP200: A canonical-autophagy-independent function.
Immune checkpoint blockade (ICB) has emerged as a promising therapeutic strategy because of its potential to induce durable therapeutic responses in cancer patients. However, in the case of breast cancer, its application and efficacy has been limited. As such, combinatorial therapeutic strategies that can unlock the potential of ICB in breast cancer are of urgent need. In view of that, autophagy-related proteins that play a role in the autophagic cell recycling process have been implicated in the regulation of inflammatory and anti-tumor immune responses. Accordingly, autophagy-related proteins represent a group of prospective therapeutic targets in conjunction with ICB. In our recent study (Okamoto T et al. (2020), Cancer Res), we developed immune-competent mouse models of breast cancer which were deficient for the autophagic function of FIP200 or had FIP200 completely ablated to test the efficacy of ICB. We showed that although FIP200's autophagy function was required for progression of PyMT-driven mammary tumors, FIP200's canonical-autophagy-independent function was responsible for increased T-cell infiltration, IFN-signaling and ICB efficacy. These findings provide genetic proof of principle for a combinatorial therapeutic strategy that involves ablation of FIP200 to improve ICB efficacy in non-responsive breast cancers.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.