Darine Villela, Juliana Sobral de Barros, Silvia Souza da Costa, Talita F M Aguiar, Francine Campagnari, Angela M Vianna-Morgante, Ana C V Krepischi, Carla Rosenberg
{"title":"利用靶向测序技术检测片段性和全染色体不平衡的嵌合现象。","authors":"Darine Villela, Juliana Sobral de Barros, Silvia Souza da Costa, Talita F M Aguiar, Francine Campagnari, Angela M Vianna-Morgante, Ana C V Krepischi, Carla Rosenberg","doi":"10.1111/ahg.12402","DOIUrl":null,"url":null,"abstract":"<p><p>Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test.</p>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"85 1","pages":"18-26"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ahg.12402","citationCount":"2","resultStr":"{\"title\":\"Detection of mosaicism for segmental and whole chromosome imbalances by targeted sequencing.\",\"authors\":\"Darine Villela, Juliana Sobral de Barros, Silvia Souza da Costa, Talita F M Aguiar, Francine Campagnari, Angela M Vianna-Morgante, Ana C V Krepischi, Carla Rosenberg\",\"doi\":\"10.1111/ahg.12402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test.</p>\",\"PeriodicalId\":8085,\"journal\":{\"name\":\"Annals of Human Genetics\",\"volume\":\"85 1\",\"pages\":\"18-26\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ahg.12402\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ahg.12402\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ahg.12402","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Detection of mosaicism for segmental and whole chromosome imbalances by targeted sequencing.
Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.