Irene Tiemann-Boege, Theresa Mair, Atena Yasari, Michal Zurovec
{"title":"酪氨酸受体激酶通路中的致病性杂合子后嵌合:隐藏在少数细胞中的潜在不明人类疾病。","authors":"Irene Tiemann-Boege, Theresa Mair, Atena Yasari, Michal Zurovec","doi":"10.1111/febs.15528","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations occurring during embryonic development affect only a subset of cells resulting in two or more distinct cell populations that are present at different levels, also known as postzygotic mosaicism (PZM). Although PZM is a common biological phenomenon, it is often overlooked as a source of disease due to the challenges associated with its detection and characterization, especially for very low-frequency variants. Moreover, PZM can cause a different phenotype compared to constitutional mutations. Especially, lethal mutations in receptor tyrosine kinase (RTK) pathway genes, which exist only in a mosaic state, can have completely new clinical manifestations and can look very different from the associated monogenic disorder. However, some key questions are still not addressed, such as the level of mosaicism resulting in a pathogenic phenotype and how the clinical outcome changes with the development and age. Addressing these questions is not trivial as we require methods with the sensitivity to capture some of these variants hidden away in very few cells. Recent ultra-accurate deep-sequencing approaches can now identify these low-level mosaics and will be central to understand systemic and local effects of mosaicism in the RTK pathway. The main focus of this review is to highlight the importance of low-level mosaics and the need to include their detection in studies of genomic variation associated with disease.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 10","pages":"3108-3119"},"PeriodicalIF":5.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pathogenic postzygotic mosaicism in the tyrosine receptor kinase pathway: potential unidentified human disease hidden away in a few cells.\",\"authors\":\"Irene Tiemann-Boege, Theresa Mair, Atena Yasari, Michal Zurovec\",\"doi\":\"10.1111/febs.15528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations occurring during embryonic development affect only a subset of cells resulting in two or more distinct cell populations that are present at different levels, also known as postzygotic mosaicism (PZM). Although PZM is a common biological phenomenon, it is often overlooked as a source of disease due to the challenges associated with its detection and characterization, especially for very low-frequency variants. Moreover, PZM can cause a different phenotype compared to constitutional mutations. Especially, lethal mutations in receptor tyrosine kinase (RTK) pathway genes, which exist only in a mosaic state, can have completely new clinical manifestations and can look very different from the associated monogenic disorder. However, some key questions are still not addressed, such as the level of mosaicism resulting in a pathogenic phenotype and how the clinical outcome changes with the development and age. Addressing these questions is not trivial as we require methods with the sensitivity to capture some of these variants hidden away in very few cells. Recent ultra-accurate deep-sequencing approaches can now identify these low-level mosaics and will be central to understand systemic and local effects of mosaicism in the RTK pathway. The main focus of this review is to highlight the importance of low-level mosaics and the need to include their detection in studies of genomic variation associated with disease.</p>\",\"PeriodicalId\":12261,\"journal\":{\"name\":\"FEBS Journal\",\"volume\":\"288 10\",\"pages\":\"3108-3119\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.15528\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15528","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pathogenic postzygotic mosaicism in the tyrosine receptor kinase pathway: potential unidentified human disease hidden away in a few cells.
Mutations occurring during embryonic development affect only a subset of cells resulting in two or more distinct cell populations that are present at different levels, also known as postzygotic mosaicism (PZM). Although PZM is a common biological phenomenon, it is often overlooked as a source of disease due to the challenges associated with its detection and characterization, especially for very low-frequency variants. Moreover, PZM can cause a different phenotype compared to constitutional mutations. Especially, lethal mutations in receptor tyrosine kinase (RTK) pathway genes, which exist only in a mosaic state, can have completely new clinical manifestations and can look very different from the associated monogenic disorder. However, some key questions are still not addressed, such as the level of mosaicism resulting in a pathogenic phenotype and how the clinical outcome changes with the development and age. Addressing these questions is not trivial as we require methods with the sensitivity to capture some of these variants hidden away in very few cells. Recent ultra-accurate deep-sequencing approaches can now identify these low-level mosaics and will be central to understand systemic and local effects of mosaicism in the RTK pathway. The main focus of this review is to highlight the importance of low-level mosaics and the need to include their detection in studies of genomic variation associated with disease.
期刊介绍:
The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership.
The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.