下载PDF
{"title":"利用基于aequorin的Ca2+成像系统检测机械刺激响应中的瞬态Ca2+信号的旋转装置的设计和应用。","authors":"Yingtong Peng, Yu Zheng, Jinrun Zhou, Keke Shang-Guan, Huiquan Wang, Yan Liang","doi":"10.1002/cppb.20116","DOIUrl":null,"url":null,"abstract":"<p><p>Elevation of the cytosolic free calcium ion (Ca<sup>2+</sup> ) concentration ([Ca<sup>2+</sup> ]<sub>cyt</sub> ) is one of the earliest responses to biotic and abiotic stress in plant cells. Among the various Ca<sup>2+</sup> detection systems available, aequorin-based luminescence Ca<sup>2+</sup> imaging systems provide a relatively amenable and robust method that facilitates large-scale genetic-mutant screening based on [Ca<sup>2+</sup> ]<sub>cyt</sub> responses. Compared to that mediated by chemical elicitors, mechanical stimulation-induced elevation of [Ca<sup>2+</sup> ]<sub>cyt</sub> is considerably more rapid, occurring within 10 s following stimulation. Therefore, its assessment using aequorin-based Ca<sup>2+</sup> imaging systems represents a notable challenge, given that a time interval of ≥1 min is required to reduce the background light before operating the photon imaging detector. In this context, we designed a device that can rotate automatically within the confines of an enclosed dark box, and using this, we can record [Ca<sup>2+</sup> ]<sub>cyt</sub> dynamics immediately after plants had been rotated to induce mechanical stimulation. This tool can facilitate the study of perception and early signal transduction in response to mechanical stimulation on a large scale based on [Ca<sup>2+</sup> ]<sub>cyt</sub> responses. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Detection of background luminance signals in aequorin-transformed Arabidopsis seedlings using a photon imaging detector Basic Protocol 2: Construction of the rotatory device Basic Protocol 3: Calcium measurement in Arabidopsis seedlings after rotatory stimulation Basic Protocol 4: Data analysis and processing.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"5 3","pages":"e20116"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20116","citationCount":"0","resultStr":"{\"title\":\"Design and Application of a Rotatory Device for Detecting Transient Ca<sup>2+</sup> Signals in Response to Mechanical Stimulation Using an Aequorin-Based Ca<sup>2+</sup> Imaging System.\",\"authors\":\"Yingtong Peng, Yu Zheng, Jinrun Zhou, Keke Shang-Guan, Huiquan Wang, Yan Liang\",\"doi\":\"10.1002/cppb.20116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevation of the cytosolic free calcium ion (Ca<sup>2+</sup> ) concentration ([Ca<sup>2+</sup> ]<sub>cyt</sub> ) is one of the earliest responses to biotic and abiotic stress in plant cells. Among the various Ca<sup>2+</sup> detection systems available, aequorin-based luminescence Ca<sup>2+</sup> imaging systems provide a relatively amenable and robust method that facilitates large-scale genetic-mutant screening based on [Ca<sup>2+</sup> ]<sub>cyt</sub> responses. Compared to that mediated by chemical elicitors, mechanical stimulation-induced elevation of [Ca<sup>2+</sup> ]<sub>cyt</sub> is considerably more rapid, occurring within 10 s following stimulation. Therefore, its assessment using aequorin-based Ca<sup>2+</sup> imaging systems represents a notable challenge, given that a time interval of ≥1 min is required to reduce the background light before operating the photon imaging detector. In this context, we designed a device that can rotate automatically within the confines of an enclosed dark box, and using this, we can record [Ca<sup>2+</sup> ]<sub>cyt</sub> dynamics immediately after plants had been rotated to induce mechanical stimulation. This tool can facilitate the study of perception and early signal transduction in response to mechanical stimulation on a large scale based on [Ca<sup>2+</sup> ]<sub>cyt</sub> responses. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Detection of background luminance signals in aequorin-transformed Arabidopsis seedlings using a photon imaging detector Basic Protocol 2: Construction of the rotatory device Basic Protocol 3: Calcium measurement in Arabidopsis seedlings after rotatory stimulation Basic Protocol 4: Data analysis and processing.</p>\",\"PeriodicalId\":10932,\"journal\":{\"name\":\"Current protocols in plant biology\",\"volume\":\"5 3\",\"pages\":\"e20116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cppb.20116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in plant biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cppb.20116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cppb.20116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
引用
批量引用