{"title":"平稳和遍历连续时间过程模态核回归估计的渐近性质。","authors":"Salim Bouzebda, Sultana Didi","doi":"10.1007/s13163-020-00368-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, we consider the nonparametric regression model with random design based on <math> <msub><mrow><mo>(</mo> <msub><mi>X</mi> <mi>t</mi></msub> <mo>,</mo> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>)</mo></mrow> <mrow><mi>t</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> a <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> </mrow> </math> -valued strictly stationary and ergodic continuous time process, where the regression function is given by <math><mrow><mi>m</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> <mo>=</mo> <mi>E</mi> <mo>(</mo> <mi>ψ</mi> <mo>(</mo> <mi>Y</mi> <mo>)</mo> <mo>∣</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo></mrow> </math> , for a measurable function <math><mrow><mi>ψ</mi> <mo>:</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> <mo>→</mo> <mi>R</mi></mrow> </math> . We focus on the estimation of the location <math><mrow><mi>Θ</mi></mrow> </math> (mode) of a unique maximum of <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> by the location <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> of a maximum of the Nadaraya-Watson kernel estimator <math> <mrow> <msub><mover><mi>m</mi> <mo>^</mo></mover> <mi>T</mi></msub> <mrow><mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </mrow> </math> for the curve <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> . Within this context, we obtain the consistency with rate and the asymptotic normality results for <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> under mild local smoothness assumptions on <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> and the design density <math><mrow><mi>f</mi> <mo>(</mo> <mo>·</mo> <mo>)</mo></mrow> </math> of <math><mi>X</mi></math> . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.</p>","PeriodicalId":49605,"journal":{"name":"Revista Matematica Complutense","volume":"34 3","pages":"811-852"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13163-020-00368-6","citationCount":"11","resultStr":"{\"title\":\"Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.\",\"authors\":\"Salim Bouzebda, Sultana Didi\",\"doi\":\"10.1007/s13163-020-00368-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present paper, we consider the nonparametric regression model with random design based on <math> <msub><mrow><mo>(</mo> <msub><mi>X</mi> <mi>t</mi></msub> <mo>,</mo> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>)</mo></mrow> <mrow><mi>t</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> a <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> </mrow> </math> -valued strictly stationary and ergodic continuous time process, where the regression function is given by <math><mrow><mi>m</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> <mo>=</mo> <mi>E</mi> <mo>(</mo> <mi>ψ</mi> <mo>(</mo> <mi>Y</mi> <mo>)</mo> <mo>∣</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo></mrow> </math> , for a measurable function <math><mrow><mi>ψ</mi> <mo>:</mo> <msup><mrow><mi>R</mi></mrow> <mi>q</mi></msup> <mo>→</mo> <mi>R</mi></mrow> </math> . We focus on the estimation of the location <math><mrow><mi>Θ</mi></mrow> </math> (mode) of a unique maximum of <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> by the location <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> of a maximum of the Nadaraya-Watson kernel estimator <math> <mrow> <msub><mover><mi>m</mi> <mo>^</mo></mover> <mi>T</mi></msub> <mrow><mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </mrow> </math> for the curve <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> . Within this context, we obtain the consistency with rate and the asymptotic normality results for <math> <msub> <mover><mrow><mi>Θ</mi></mrow> <mo>^</mo></mover> <mi>T</mi></msub> </math> under mild local smoothness assumptions on <math><mrow><mi>m</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mi>ψ</mi> <mo>)</mo></mrow> </math> and the design density <math><mrow><mi>f</mi> <mo>(</mo> <mo>·</mo> <mo>)</mo></mrow> </math> of <math><mi>X</mi></math> . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.</p>\",\"PeriodicalId\":49605,\"journal\":{\"name\":\"Revista Matematica Complutense\",\"volume\":\"34 3\",\"pages\":\"811-852\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13163-020-00368-6\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Complutense\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-020-00368-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Complutense","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-020-00368-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
摘要
本文考虑基于(X t, Y t) t≥0的随机设计的非参数回归模型,其中回归函数为m (X, ψ) = E (ψ (Y)∣X = X)),对于可测函数ψ: R q→R。我们着重于用曲线m(·,ψ)的Nadaraya-Watson核估计量m ^ T(·,ψ)的最大值的位置Θ ^ T来估计m(·,ψ)的唯一最大值的位置Θ(模态)。在此背景下,我们得到了在m(·,ψ)和X的设计密度f(·)的温和局部光滑假设下Θ ^ T的一致性和渐近正态性结果。除了遍历性之外,还对数据施加了任何其他假设。本文扩展了前人在混合条件下建立的一些结果的范围。我们的结果的有用性将在构建置信区域中加以说明。
Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.
In the present paper, we consider the nonparametric regression model with random design based on a -valued strictly stationary and ergodic continuous time process, where the regression function is given by , for a measurable function . We focus on the estimation of the location (mode) of a unique maximum of by the location of a maximum of the Nadaraya-Watson kernel estimator for the curve . Within this context, we obtain the consistency with rate and the asymptotic normality results for under mild local smoothness assumptions on and the design density of . Beyond ergodicity, any other assumption is imposed on the data. This paper extends the scope of some previous results established under the mixing condition. The usefulness of our results will be illustrated in the construction of confidence regions.
期刊介绍:
Revista Matemática Complutense is an international research journal supported by the School of Mathematics at Complutense University in Madrid. It publishes high quality research and survey articles across pure and applied mathematics. Fields of interests include: analysis, differential equations and applications, geometry, topology, algebra, statistics, computer sciences and astronomy. This broad interest is reflected in our interdisciplinary editorial board which is comprised of over 30 internationally esteemed researchers in diverse areas.
The Editorial Board of Revista Matemática Complutense organizes the “Santaló Lecture”, a yearly event where a distinguished mathematician is invited to present a lecture at Complutense University and contribute to the journal. Past lecturers include: Charles T.C. Wall, Jack K. Hale, Hans Triebel, Marcelo Viana, Narayanswamy Balakrishnan, Nigel Kalton, Alfio Quarteroni, David E. Edmunds, Giuseppe Buttazzo, Juan L. Vázquez, Eduard Feireisl, Nigel Hitchin, Lajos Horváth, Hélène Esnault, Luigi Ambrosio, Ignacio Cirac and Bernd Sturmfels. The Santaló Lecturer for 2019 will be Noel Cressie from National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong.