{"title":"外泌体circFBLIM1通过调控miR-338/LRP6轴促进肝细胞癌进展和糖酵解","authors":"Zhiwen Lai, Tianning Wei, Qingming Li, Xianglong Wang, Yang Zhang, Shengliang Zhang","doi":"10.1089/cbr.2020.3564","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Hepatocellular carcinoma (HCC) is the most common form of liver cancer. Circular RNAs (circRNAs) play a vital role in cancer development and progression. This study investigated the role and potential mechanism of circRNA filamin binding LIM protein 1 (circFBLIM1) in HCC. <b><i>Methods:</i></b> Exosomes were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot assay. The levels of circFBLIM1, miR-338, and low-density lipoprotein receptor-related protein 6 (LRP6) were measured by quantitative real-time polymerase chain reaction or Western blot. Glycolysis was analyzed by detecting glucose consumption, lactate production, ATP level, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was detected by flow cytometry. Xenograft assay was performed to analyze tumor growth <i>in vivo</i>. The interaction among circFBLIM1, miR-338, and LRP6 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. This study was approved by the Institutional Review Board of the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine. <b><i>Results:</i></b> CircFBLIM1 was highly expressed in HCC serum exosomes and HCC cells. Inhibition of circFBLIM1 confined HCC glycolysis and progression. CircFBLIM1 knockdown blocked tumorigenesis <i>in vivo</i>. CircFBLIM1 was a sponge of miR-338 and promoted HCC progression and glycolysis by regulating miR-338. Moreover, miR-338 suppressed HCC progression and glycolysis via targeting LRP6. Mechanistically, circFBLIM1 functioned as an miR-338 sponge to upregulate LRP6. <b><i>Conclusion:</i></b> CircFBLIM1 facilitated HCC progression and glycolysis via modulating the miR-338/LRP6 axis, which may provide promising therapeutic targets for HCC.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":"674-683"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/cbr.2020.3564","citationCount":"32","resultStr":"{\"title\":\"Exosomal circFBLIM1 Promotes Hepatocellular Carcinoma Progression and Glycolysis by Regulating the miR-338/LRP6 Axis.\",\"authors\":\"Zhiwen Lai, Tianning Wei, Qingming Li, Xianglong Wang, Yang Zhang, Shengliang Zhang\",\"doi\":\"10.1089/cbr.2020.3564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Hepatocellular carcinoma (HCC) is the most common form of liver cancer. Circular RNAs (circRNAs) play a vital role in cancer development and progression. This study investigated the role and potential mechanism of circRNA filamin binding LIM protein 1 (circFBLIM1) in HCC. <b><i>Methods:</i></b> Exosomes were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot assay. The levels of circFBLIM1, miR-338, and low-density lipoprotein receptor-related protein 6 (LRP6) were measured by quantitative real-time polymerase chain reaction or Western blot. Glycolysis was analyzed by detecting glucose consumption, lactate production, ATP level, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was detected by flow cytometry. Xenograft assay was performed to analyze tumor growth <i>in vivo</i>. The interaction among circFBLIM1, miR-338, and LRP6 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. This study was approved by the Institutional Review Board of the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine. <b><i>Results:</i></b> CircFBLIM1 was highly expressed in HCC serum exosomes and HCC cells. Inhibition of circFBLIM1 confined HCC glycolysis and progression. CircFBLIM1 knockdown blocked tumorigenesis <i>in vivo</i>. CircFBLIM1 was a sponge of miR-338 and promoted HCC progression and glycolysis by regulating miR-338. Moreover, miR-338 suppressed HCC progression and glycolysis via targeting LRP6. Mechanistically, circFBLIM1 functioned as an miR-338 sponge to upregulate LRP6. <b><i>Conclusion:</i></b> CircFBLIM1 facilitated HCC progression and glycolysis via modulating the miR-338/LRP6 axis, which may provide promising therapeutic targets for HCC.</p>\",\"PeriodicalId\":55277,\"journal\":{\"name\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"674-683\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/cbr.2020.3564\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cbr.2020.3564\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2020.3564","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Exosomal circFBLIM1 Promotes Hepatocellular Carcinoma Progression and Glycolysis by Regulating the miR-338/LRP6 Axis.
Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer. Circular RNAs (circRNAs) play a vital role in cancer development and progression. This study investigated the role and potential mechanism of circRNA filamin binding LIM protein 1 (circFBLIM1) in HCC. Methods: Exosomes were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot assay. The levels of circFBLIM1, miR-338, and low-density lipoprotein receptor-related protein 6 (LRP6) were measured by quantitative real-time polymerase chain reaction or Western blot. Glycolysis was analyzed by detecting glucose consumption, lactate production, ATP level, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was detected by flow cytometry. Xenograft assay was performed to analyze tumor growth in vivo. The interaction among circFBLIM1, miR-338, and LRP6 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. This study was approved by the Institutional Review Board of the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine. Results: CircFBLIM1 was highly expressed in HCC serum exosomes and HCC cells. Inhibition of circFBLIM1 confined HCC glycolysis and progression. CircFBLIM1 knockdown blocked tumorigenesis in vivo. CircFBLIM1 was a sponge of miR-338 and promoted HCC progression and glycolysis by regulating miR-338. Moreover, miR-338 suppressed HCC progression and glycolysis via targeting LRP6. Mechanistically, circFBLIM1 functioned as an miR-338 sponge to upregulate LRP6. Conclusion: CircFBLIM1 facilitated HCC progression and glycolysis via modulating the miR-338/LRP6 axis, which may provide promising therapeutic targets for HCC.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.