Zhuoran Wang , Michael P. Hanrahan , Takeshi Kobayashi , Frédéric A. Perras , Yunhua Chen , Frank Engelke , Christian Reiter , Armin Purea , Aaron J. Rossini , Marek Pruski
{"title":"将快速魔角自旋动态核极化与间接探测相结合,进一步提高固态核磁共振光谱的灵敏度","authors":"Zhuoran Wang , Michael P. Hanrahan , Takeshi Kobayashi , Frédéric A. Perras , Yunhua Chen , Frank Engelke , Christian Reiter , Armin Purea , Aaron J. Rossini , Marek Pruski","doi":"10.1016/j.ssnmr.2020.101685","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast </span>magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected </span>heteronuclear correlation (idHETCOR) experiments on </span><sup>13</sup>C, <sup>15</sup>N, <sup>113</sup>Cd and <sup>89</sup><span>Y nuclei in functionalized mesoporous silica<span>, CdS nanoparticles, and Y</span></span><sub>2</sub>O<sub>3</sub><span><span><span> nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D </span>HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP </span>polarization transfer<span> efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For </span></span><sup>89</sup>Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D<sup>89</sup>Y-detected CP experiment performed with a 3.2-mm rotor.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"109 ","pages":"Article 101685"},"PeriodicalIF":1.8000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101685","citationCount":"17","resultStr":"{\"title\":\"Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy\",\"authors\":\"Zhuoran Wang , Michael P. Hanrahan , Takeshi Kobayashi , Frédéric A. Perras , Yunhua Chen , Frank Engelke , Christian Reiter , Armin Purea , Aaron J. Rossini , Marek Pruski\",\"doi\":\"10.1016/j.ssnmr.2020.101685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast </span>magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected </span>heteronuclear correlation (idHETCOR) experiments on </span><sup>13</sup>C, <sup>15</sup>N, <sup>113</sup>Cd and <sup>89</sup><span>Y nuclei in functionalized mesoporous silica<span>, CdS nanoparticles, and Y</span></span><sub>2</sub>O<sub>3</sub><span><span><span> nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D </span>HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP </span>polarization transfer<span> efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For </span></span><sup>89</sup>Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D<sup>89</sup>Y-detected CP experiment performed with a 3.2-mm rotor.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"109 \",\"pages\":\"Article 101685\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101685\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204020300473\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204020300473","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy
Dynamic nuclear polarization (DNP) and indirect detection are two commonly applied approaches for enhancing the sensitivity of solid-state NMR spectroscopy. However, their use in tandem has not yet been investigated. With the advent of low-temperature fast magic angle spinning (MAS) probes with 1.3-mm diameter rotors capable of MAS at 40 kHz it becomes feasible to combine these two techniques. In this study, we performed DNP-enhanced 2D indirectly detected heteronuclear correlation (idHETCOR) experiments on 13C, 15N, 113Cd and 89Y nuclei in functionalized mesoporous silica, CdS nanoparticles, and Y2O3 nanoparticles. The sensitivity of the 2D idHETCOR experiments was compared with those of DNP-enhanced directly-detected 1D cross polarization (CP) and 2D HETCOR experiments performed with a standard 3.2-mm rotor. Due to low CP polarization transfer efficiencies and large proton linewidth, the sensitivity gains achieved by indirect detection alone were lower than in conventional (non-DNP) experiments. Nevertheless, despite the smaller sample volume the 2D idHETCOR experiments showed better absolute sensitivities than 2D HETCOR experiments for nuclei with the lowest gyromagnetic ratios. For 89Y, 2D idHETCOR provided 8.2 times better sensitivity than the 1 D89Y-detected CP experiment performed with a 3.2-mm rotor.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.