{"title":"COVID-19时代及以后大环内酯类抗生素抗病毒特性的临床证据","authors":"Dimitri Poddighe, Mohamad Aljofan","doi":"10.1177/2040206620961712","DOIUrl":null,"url":null,"abstract":"<p><p>Macrolides are a large group of antibiotics characterised by the presence of a macro-lactone ring of variable size. The prototype of macrolide antibiotics, erythromycin was first produced by <i>Streptomyces</i> and associated species more than half a century ago; other related drugs were developed. These drugs have been shown to have several pharmacological properties: in addition to their antibiotic activity, they possess some anti-inflammatory properties and have been also considered against non-bacterial infections. In this review, we analysed the available clinical evidences regarding the potential anti-viral activity of macrolides, by focusing on erythromycin, clarithromycin and azithromycin. Overall, there is no significant evidences so far that macrolides might have a direct benefit on most of viral infections considered in this review (RSV, Influenza, coronaviruses, Ebola and Zika viruses). However, their clinical benefit cannot be ruled out without further and focused clinical studies. Macrolides may improve the clinical course of viral respiratory infections somehow, at least through indirect mechanisms relying on some and variable anti-inflammatory and/or immunomodulatory effects, in addition to their well-known antibacterial activity.</p>","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"28 ","pages":"2040206620961712"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2040206620961712","citationCount":"31","resultStr":"{\"title\":\"Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond.\",\"authors\":\"Dimitri Poddighe, Mohamad Aljofan\",\"doi\":\"10.1177/2040206620961712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrolides are a large group of antibiotics characterised by the presence of a macro-lactone ring of variable size. The prototype of macrolide antibiotics, erythromycin was first produced by <i>Streptomyces</i> and associated species more than half a century ago; other related drugs were developed. These drugs have been shown to have several pharmacological properties: in addition to their antibiotic activity, they possess some anti-inflammatory properties and have been also considered against non-bacterial infections. In this review, we analysed the available clinical evidences regarding the potential anti-viral activity of macrolides, by focusing on erythromycin, clarithromycin and azithromycin. Overall, there is no significant evidences so far that macrolides might have a direct benefit on most of viral infections considered in this review (RSV, Influenza, coronaviruses, Ebola and Zika viruses). However, their clinical benefit cannot be ruled out without further and focused clinical studies. Macrolides may improve the clinical course of viral respiratory infections somehow, at least through indirect mechanisms relying on some and variable anti-inflammatory and/or immunomodulatory effects, in addition to their well-known antibacterial activity.</p>\",\"PeriodicalId\":7960,\"journal\":{\"name\":\"Antiviral Chemistry and Chemotherapy\",\"volume\":\"28 \",\"pages\":\"2040206620961712\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2040206620961712\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral Chemistry and Chemotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2040206620961712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2040206620961712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond.
Macrolides are a large group of antibiotics characterised by the presence of a macro-lactone ring of variable size. The prototype of macrolide antibiotics, erythromycin was first produced by Streptomyces and associated species more than half a century ago; other related drugs were developed. These drugs have been shown to have several pharmacological properties: in addition to their antibiotic activity, they possess some anti-inflammatory properties and have been also considered against non-bacterial infections. In this review, we analysed the available clinical evidences regarding the potential anti-viral activity of macrolides, by focusing on erythromycin, clarithromycin and azithromycin. Overall, there is no significant evidences so far that macrolides might have a direct benefit on most of viral infections considered in this review (RSV, Influenza, coronaviruses, Ebola and Zika viruses). However, their clinical benefit cannot be ruled out without further and focused clinical studies. Macrolides may improve the clinical course of viral respiratory infections somehow, at least through indirect mechanisms relying on some and variable anti-inflammatory and/or immunomodulatory effects, in addition to their well-known antibacterial activity.
期刊介绍:
Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.