P物质通过调节间充质干细胞的血管生成潜能来增强其治疗效果。

IF 5.3 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Cellular and Molecular Medicine Pub Date : 2020-11-01 Epub Date: 2020-09-28 DOI:10.1111/jcmm.15804
Hyun Sook Hong, Suna Kim, Yinji Jin, Youngsook Son
{"title":"P物质通过调节间充质干细胞的血管生成潜能来增强其治疗效果。","authors":"Hyun Sook Hong,&nbsp;Suna Kim,&nbsp;Yinji Jin,&nbsp;Youngsook Son","doi":"10.1111/jcmm.15804","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow mesenchymal stem cell (MSC) therapy acts through multiple differentiations in damaged tissue or via secretion of paracrine factors, as demonstrated in various inflammatory and ischaemic diseases. However, long-term ex vivo culture to obtain a sufficient number of cells in MSC transplantation leads to cellular senescence, deficiency of the paracrine potential, and loss of survival rate post-transplantation. In this study, we evaluated whether supplementation of MSCs with substance P (SP) can improve their therapeutic potential. SP treatment elevated the secretion of paracrine/angiogenic factors, including VEGF, SDF-1a and PDGF-BB, from late passage MSCs in vitro. MSCs supplemented with SP accelerated epidermal/dermal regeneration and neovascularization and suppressed inflammation in vivo, compared to MSCs transplanted alone. Importantly, supplementation with SP enabled the incorporation of transplanted human MSCs into the host vasculature as pericytes via PDGF signalling, leading to the direct engagement of transplanted cells in compact vasculature formation. Our results showed that SP is capable of restoring the cellular potential of senescent stem cells, possibly by modulating the generation of paracrine factors from MSCs, which might accelerate MSC-mediated tissue repair. Thus, SP is anticipated to be a potential beneficial agent in MSC therapy for inflammatory or ischaemic diseases and cutaneous wounds.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15804","citationCount":"5","resultStr":"{\"title\":\"Substance P enhances the therapeutic effect of MSCs by modulating their angiogenic potential.\",\"authors\":\"Hyun Sook Hong,&nbsp;Suna Kim,&nbsp;Yinji Jin,&nbsp;Youngsook Son\",\"doi\":\"10.1111/jcmm.15804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone marrow mesenchymal stem cell (MSC) therapy acts through multiple differentiations in damaged tissue or via secretion of paracrine factors, as demonstrated in various inflammatory and ischaemic diseases. However, long-term ex vivo culture to obtain a sufficient number of cells in MSC transplantation leads to cellular senescence, deficiency of the paracrine potential, and loss of survival rate post-transplantation. In this study, we evaluated whether supplementation of MSCs with substance P (SP) can improve their therapeutic potential. SP treatment elevated the secretion of paracrine/angiogenic factors, including VEGF, SDF-1a and PDGF-BB, from late passage MSCs in vitro. MSCs supplemented with SP accelerated epidermal/dermal regeneration and neovascularization and suppressed inflammation in vivo, compared to MSCs transplanted alone. Importantly, supplementation with SP enabled the incorporation of transplanted human MSCs into the host vasculature as pericytes via PDGF signalling, leading to the direct engagement of transplanted cells in compact vasculature formation. Our results showed that SP is capable of restoring the cellular potential of senescent stem cells, possibly by modulating the generation of paracrine factors from MSCs, which might accelerate MSC-mediated tissue repair. Thus, SP is anticipated to be a potential beneficial agent in MSC therapy for inflammatory or ischaemic diseases and cutaneous wounds.</p>\",\"PeriodicalId\":15215,\"journal\":{\"name\":\"Journal of Cellular and Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/jcmm.15804\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jcmm.15804\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.15804","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

摘要

骨髓间充质干细胞(MSC)治疗通过损伤组织中的多种分化或通过分泌旁分泌因子起作用,这在各种炎症和缺血性疾病中得到证实。然而,在骨髓间充质干细胞移植中,为了获得足够数量的细胞而进行的长期离体培养会导致细胞衰老、旁分泌电位不足、移植后存活率下降。在这项研究中,我们评估了补充P物质(SP)是否可以提高MSCs的治疗潜力。SP处理可提高体外晚传代MSCs的旁分泌/血管生成因子(包括VEGF、SDF-1a和PDGF-BB)的分泌。与单独移植的MSCs相比,补充SP的MSCs在体内加速了表皮/真皮的再生和新生血管的形成,并抑制了炎症。重要的是,补充SP能够使移植的人间充质干细胞通过PDGF信号传导进入宿主血管作为周细胞,导致移植细胞直接参与致密血管的形成。我们的研究结果表明,SP能够恢复衰老干细胞的细胞潜能,可能是通过调节MSCs中旁分泌因子的产生,这可能加速MSCs介导的组织修复。因此,SP有望成为MSC治疗炎症性或缺血性疾病和皮肤伤口的潜在有益剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substance P enhances the therapeutic effect of MSCs by modulating their angiogenic potential.

Bone marrow mesenchymal stem cell (MSC) therapy acts through multiple differentiations in damaged tissue or via secretion of paracrine factors, as demonstrated in various inflammatory and ischaemic diseases. However, long-term ex vivo culture to obtain a sufficient number of cells in MSC transplantation leads to cellular senescence, deficiency of the paracrine potential, and loss of survival rate post-transplantation. In this study, we evaluated whether supplementation of MSCs with substance P (SP) can improve their therapeutic potential. SP treatment elevated the secretion of paracrine/angiogenic factors, including VEGF, SDF-1a and PDGF-BB, from late passage MSCs in vitro. MSCs supplemented with SP accelerated epidermal/dermal regeneration and neovascularization and suppressed inflammation in vivo, compared to MSCs transplanted alone. Importantly, supplementation with SP enabled the incorporation of transplanted human MSCs into the host vasculature as pericytes via PDGF signalling, leading to the direct engagement of transplanted cells in compact vasculature formation. Our results showed that SP is capable of restoring the cellular potential of senescent stem cells, possibly by modulating the generation of paracrine factors from MSCs, which might accelerate MSC-mediated tissue repair. Thus, SP is anticipated to be a potential beneficial agent in MSC therapy for inflammatory or ischaemic diseases and cutaneous wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
1.90%
发文量
496
审稿时长
28 weeks
期刊介绍: Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.
期刊最新文献
Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. Application of Joint Mobilizing Chuna Following Tibial Plateau Fracture Surgery: A Study of Two Cases Korean Domestic Trends of Clinical Research and Direction of Intervention for Fibromyalgia Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. Loganetin and 5-fluorouracil synergistically inhibit the carcinogenesis of gastric cancer cells via down-regulation of the Wnt/β-catenin pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1