{"title":"急性运动对遗忘的实验影响。","authors":"D C Moore, S Ryu, P D Loprinzi","doi":"10.1556/2060.2020.00033","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Prior research has evaluated the effects of acute exercise on episodic memory function. These studies have, on occasion, demonstrated that acute exercise may enhance both short- and long-term memory. It is uncertain as to whether the acute exercise improvements in long-term memory are a result of acute exercise attenuating declines in long-term memory, or rather, are driven by the enhancement effects of acute exercise on short-term memory. The present empirical study evaluates whether the decline from short- to long-term is influenced by acute exercise. This relationship is plausible as exercise has been shown to activate neurophysiological pathways (e.g., RAC1) that are involved in the mechanisms of forgetting.</p><p><strong>Methods: </strong>To evaluate the effects of acute exercise on forgetting, we used data from 12 of our laboratory's prior experiments (N = 538). Across these 12 experiments, acute exercise ranged from 10 to 15 mins in duration (moderate-to-vigorous intensity). Episodic memory was assessed from word-list or paragraph-based assessments. Short-term memory was assessed immediately after encoding, with long-term memory assessed approximately 20-min later. Forgetting was calculated as the difference in short- and long-term memory performance.</p><p><strong>Results: </strong>Acute exercise (vs. seated control) was not associated with an attenuated forgetting effect (d = 0.10; 95% CI: -0.04, 0.25, P = 0.17). We observed no evidence of a significant moderation effect (Q = 6.16, df = 17, P = 0.17, I2 = 0.00) for any of the evaluated parameters, including study design, exercise intensity and delay period.</p><p><strong>Conclusion: </strong>Across our 12 experimental studies, acute exercise was not associated with an attenuated forgetting effect. We discuss these implications for future research that evaluates the effects of acute exercise on long-term memory function.</p>","PeriodicalId":20058,"journal":{"name":"Physiology international","volume":"107 3","pages":"359-375"},"PeriodicalIF":2.2000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental effects of acute exercise on forgetting.\",\"authors\":\"D C Moore, S Ryu, P D Loprinzi\",\"doi\":\"10.1556/2060.2020.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Prior research has evaluated the effects of acute exercise on episodic memory function. These studies have, on occasion, demonstrated that acute exercise may enhance both short- and long-term memory. It is uncertain as to whether the acute exercise improvements in long-term memory are a result of acute exercise attenuating declines in long-term memory, or rather, are driven by the enhancement effects of acute exercise on short-term memory. The present empirical study evaluates whether the decline from short- to long-term is influenced by acute exercise. This relationship is plausible as exercise has been shown to activate neurophysiological pathways (e.g., RAC1) that are involved in the mechanisms of forgetting.</p><p><strong>Methods: </strong>To evaluate the effects of acute exercise on forgetting, we used data from 12 of our laboratory's prior experiments (N = 538). Across these 12 experiments, acute exercise ranged from 10 to 15 mins in duration (moderate-to-vigorous intensity). Episodic memory was assessed from word-list or paragraph-based assessments. Short-term memory was assessed immediately after encoding, with long-term memory assessed approximately 20-min later. Forgetting was calculated as the difference in short- and long-term memory performance.</p><p><strong>Results: </strong>Acute exercise (vs. seated control) was not associated with an attenuated forgetting effect (d = 0.10; 95% CI: -0.04, 0.25, P = 0.17). We observed no evidence of a significant moderation effect (Q = 6.16, df = 17, P = 0.17, I2 = 0.00) for any of the evaluated parameters, including study design, exercise intensity and delay period.</p><p><strong>Conclusion: </strong>Across our 12 experimental studies, acute exercise was not associated with an attenuated forgetting effect. We discuss these implications for future research that evaluates the effects of acute exercise on long-term memory function.</p>\",\"PeriodicalId\":20058,\"journal\":{\"name\":\"Physiology international\",\"volume\":\"107 3\",\"pages\":\"359-375\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1556/2060.2020.00033\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/17 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2060.2020.00033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/17 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Experimental effects of acute exercise on forgetting.
Objective: Prior research has evaluated the effects of acute exercise on episodic memory function. These studies have, on occasion, demonstrated that acute exercise may enhance both short- and long-term memory. It is uncertain as to whether the acute exercise improvements in long-term memory are a result of acute exercise attenuating declines in long-term memory, or rather, are driven by the enhancement effects of acute exercise on short-term memory. The present empirical study evaluates whether the decline from short- to long-term is influenced by acute exercise. This relationship is plausible as exercise has been shown to activate neurophysiological pathways (e.g., RAC1) that are involved in the mechanisms of forgetting.
Methods: To evaluate the effects of acute exercise on forgetting, we used data from 12 of our laboratory's prior experiments (N = 538). Across these 12 experiments, acute exercise ranged from 10 to 15 mins in duration (moderate-to-vigorous intensity). Episodic memory was assessed from word-list or paragraph-based assessments. Short-term memory was assessed immediately after encoding, with long-term memory assessed approximately 20-min later. Forgetting was calculated as the difference in short- and long-term memory performance.
Results: Acute exercise (vs. seated control) was not associated with an attenuated forgetting effect (d = 0.10; 95% CI: -0.04, 0.25, P = 0.17). We observed no evidence of a significant moderation effect (Q = 6.16, df = 17, P = 0.17, I2 = 0.00) for any of the evaluated parameters, including study design, exercise intensity and delay period.
Conclusion: Across our 12 experimental studies, acute exercise was not associated with an attenuated forgetting effect. We discuss these implications for future research that evaluates the effects of acute exercise on long-term memory function.
期刊介绍:
The journal provides a forum for important new research papers written by eminent scientists on experimental medical sciences. Papers reporting on both original work and review articles in the fields of basic and clinical physiology, pathophysiology (from the subcellular organization level up to the oranizmic one), as well as related disciplines, including history of physiological sciences, are accepted.