在信息素反应过程中,酿酒葡萄球菌的GPCR受体磷酸化和内吞作用对于在内部信号之间切换极化生长并不是必需的。

Q2 Agricultural and Biological Sciences Communicative and Integrative Biology Pub Date : 2020-08-20 DOI:10.1080/19420889.2020.1806667
Gustavo Vasen, Paula Dunayevich, Andreas Constantinou, Alejandro Colman-Lerner
{"title":"在信息素反应过程中,酿酒葡萄球菌的GPCR受体磷酸化和内吞作用对于在内部信号之间切换极化生长并不是必需的。","authors":"Gustavo Vasen, Paula Dunayevich, Andreas Constantinou, Alejandro Colman-Lerner","doi":"10.1080/19420889.2020.1806667","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotactic/chemotropic cells follow accurately the direction of gradients of regulatory molecules. Many G-protein-coupled receptors (GPCR) function as chemoattractant receptors to guide polarized responses. In \"a\" mating type yeast, the GPCR Ste2 senses the α-cell's pheromone. Previously, phosphorylation and trafficking of this receptor have been implicated in the process of gradient sensing, where cells dynamically correct growth. Correction is often necessary since yeast have intrinsic polarity sites that interfere with a correct initial gradient decoding. We have recently showed that when actively dividing (not in G1) yeast are exposed to a uniform pheromone concentration, they initiate a pheromone-induced polarization next to the mother-daughter cytokinesis site. Then, they reorient their growth to the intrinsic polarity site. Here, to study if Ste2 phosphorylation and internalization are involved in this process, we generated receptor variants combining three types of mutated signals for the first time: phosphorylation, ubiquitylation and the NPFX<sub>1,2</sub>D Sla1-binding motif. We first characterized their effect on endocytosis and found that these processes regulate internalization in a more complex manner than previously shown. Interestingly, we showed that receptor phosphorylation can drive internalization independently of ubiquitylation and the NPFX<sub>1,2</sub>D motif. When tested in our assays, cells expressing either phosphorylation or endocytosis-deficient receptors were able to switch away from the cytokinesis site to find the intrinsic polarity site as efficiently as their WT counterparts. Thus, we conclude that these processes are not necessary for the reorientation of polarization.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":" ","pages":"128-139"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19420889.2020.1806667","citationCount":"2","resultStr":"{\"title\":\"GPCR receptor phosphorylation and endocytosis are not necessary to switch polarized growth between internal cues during pheromone response in <i>S. cerevisiae</i>.\",\"authors\":\"Gustavo Vasen, Paula Dunayevich, Andreas Constantinou, Alejandro Colman-Lerner\",\"doi\":\"10.1080/19420889.2020.1806667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotactic/chemotropic cells follow accurately the direction of gradients of regulatory molecules. Many G-protein-coupled receptors (GPCR) function as chemoattractant receptors to guide polarized responses. In \\\"a\\\" mating type yeast, the GPCR Ste2 senses the α-cell's pheromone. Previously, phosphorylation and trafficking of this receptor have been implicated in the process of gradient sensing, where cells dynamically correct growth. Correction is often necessary since yeast have intrinsic polarity sites that interfere with a correct initial gradient decoding. We have recently showed that when actively dividing (not in G1) yeast are exposed to a uniform pheromone concentration, they initiate a pheromone-induced polarization next to the mother-daughter cytokinesis site. Then, they reorient their growth to the intrinsic polarity site. Here, to study if Ste2 phosphorylation and internalization are involved in this process, we generated receptor variants combining three types of mutated signals for the first time: phosphorylation, ubiquitylation and the NPFX<sub>1,2</sub>D Sla1-binding motif. We first characterized their effect on endocytosis and found that these processes regulate internalization in a more complex manner than previously shown. Interestingly, we showed that receptor phosphorylation can drive internalization independently of ubiquitylation and the NPFX<sub>1,2</sub>D motif. When tested in our assays, cells expressing either phosphorylation or endocytosis-deficient receptors were able to switch away from the cytokinesis site to find the intrinsic polarity site as efficiently as their WT counterparts. Thus, we conclude that these processes are not necessary for the reorientation of polarization.</p>\",\"PeriodicalId\":39647,\"journal\":{\"name\":\"Communicative and Integrative Biology\",\"volume\":\" \",\"pages\":\"128-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19420889.2020.1806667\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communicative and Integrative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19420889.2020.1806667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicative and Integrative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19420889.2020.1806667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

趋化/趋化细胞精确地遵循调控分子梯度的方向。许多g蛋白偶联受体(GPCR)作为化学引诱受体引导极化反应。在“a”交配型酵母中,GPCR Ste2检测α-细胞的信息素。在此之前,这种受体的磷酸化和运输与梯度传感过程有关,在这个过程中,细胞动态地纠正生长。校正通常是必要的,因为酵母具有干扰正确的初始梯度解码的固有极性位点。我们最近的研究表明,当活跃分裂(不是在G1期)的酵母暴露于均匀的信息素浓度时,它们在母-子细胞分裂位点附近启动信息素诱导的极化。然后,它们将其生长重新定向到本征极性位置。为了研究Ste2磷酸化和内化是否参与了这一过程,我们首次生成了结合三种突变信号的受体变体:磷酸化、泛素化和NPFX1,2D sla1结合基元。我们首先描述了它们对内吞作用的影响,并发现这些过程以比先前显示的更复杂的方式调节内化。有趣的是,我们发现受体磷酸化可以独立于泛素化和NPFX1,2D基序驱动内化。当在我们的实验中测试时,表达磷酸化或内吞缺陷受体的细胞能够从细胞质分裂位点切换到与WT对应的固有极性位点一样有效。因此,我们得出结论,这些过程对极化重定向不是必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPCR receptor phosphorylation and endocytosis are not necessary to switch polarized growth between internal cues during pheromone response in S. cerevisiae.

Chemotactic/chemotropic cells follow accurately the direction of gradients of regulatory molecules. Many G-protein-coupled receptors (GPCR) function as chemoattractant receptors to guide polarized responses. In "a" mating type yeast, the GPCR Ste2 senses the α-cell's pheromone. Previously, phosphorylation and trafficking of this receptor have been implicated in the process of gradient sensing, where cells dynamically correct growth. Correction is often necessary since yeast have intrinsic polarity sites that interfere with a correct initial gradient decoding. We have recently showed that when actively dividing (not in G1) yeast are exposed to a uniform pheromone concentration, they initiate a pheromone-induced polarization next to the mother-daughter cytokinesis site. Then, they reorient their growth to the intrinsic polarity site. Here, to study if Ste2 phosphorylation and internalization are involved in this process, we generated receptor variants combining three types of mutated signals for the first time: phosphorylation, ubiquitylation and the NPFX1,2D Sla1-binding motif. We first characterized their effect on endocytosis and found that these processes regulate internalization in a more complex manner than previously shown. Interestingly, we showed that receptor phosphorylation can drive internalization independently of ubiquitylation and the NPFX1,2D motif. When tested in our assays, cells expressing either phosphorylation or endocytosis-deficient receptors were able to switch away from the cytokinesis site to find the intrinsic polarity site as efficiently as their WT counterparts. Thus, we conclude that these processes are not necessary for the reorientation of polarization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communicative and Integrative Biology
Communicative and Integrative Biology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
22
审稿时长
6 weeks
期刊最新文献
Quorum sensing and antibiotic resistance in polymicrobial infections. Synergistic effect of nano-potassium and chitosan as stimulants inducing growth and yield of bird of paradise (Sterlitiza reginae L.) in newly lands. Hypersensitivity to man-made electromagnetic fields (EHS) correlates with immune responsivity to oxidative stress: a case report. Emergence of information processing in biological systems and the origin of life. Identification and selection of reference genes for analysis of gene expression by quantitative real-time PCR in the euhalophyte Suaeda altissima (L.) Pall.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1