热致高血容量:适应方式重要吗?对2020年东京奥运会的表现有什么影响?

Q1 Biochemistry, Genetics and Molecular Biology Temperature Pub Date : 2019-09-03 DOI:10.1080/23328940.2019.1653736
Lorenz S Kissling, Ashley P Akerman, James D Cotter
{"title":"热致高血容量:适应方式重要吗?对2020年东京奥运会的表现有什么影响?","authors":"Lorenz S Kissling, Ashley P Akerman, James D Cotter","doi":"10.1080/23328940.2019.1653736","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tokyo 2020 will likely be the most heat stressful Olympics to date, so preparation to mitigate the effects of humid heat will be essential for performance in several of the 33 sports. One key consideration is heat acclimation (HA); the repeated exposure to heat to elicit physiological and psychophysical adaptations that improve tolerance and exercise performance in the heat. Heat can be imposed in various ways, including exercise in the heat, hot water immersion, or passive exposure to hot air (e.g., sauna). The physical requirements of each sport will determine the impact that the heat has on performance, and the adaptations required from HA to mitigate these effects. This review focuses on one key adaptation, plasma volume expansion (PVE), and how the mode of HA may affect the kinetics of adaptation. PVE constitutes a primary HA-mediated adaptation and contributes to functional adaptations (e.g., lower heart rate and increased heat loss capacity), which may be particularly important in athletes of “sub-elite” cardiorespiratory fitness (e.g., team sports), alongside athletes of prolonged endurance events. This review: i) highlights the ability of exercise in the heat, hot-water immersion, and passive hot air to expand PV, providing the first quantitative assessment of the efficacy of different heating modes; ii) discusses how this may apply to athletes at Tokyo 2020; and iii) provides recommendations regarding the protocol of HA and the prospect for achieving PVE (and the related outcomes).","PeriodicalId":36837,"journal":{"name":"Temperature","volume":" ","pages":"129-148"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23328940.2019.1653736","citationCount":"15","resultStr":"{\"title\":\"Heat-induced hypervolemia: Does the mode of acclimation matter and what are the implications for performance at Tokyo 2020?\",\"authors\":\"Lorenz S Kissling, Ashley P Akerman, James D Cotter\",\"doi\":\"10.1080/23328940.2019.1653736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Tokyo 2020 will likely be the most heat stressful Olympics to date, so preparation to mitigate the effects of humid heat will be essential for performance in several of the 33 sports. One key consideration is heat acclimation (HA); the repeated exposure to heat to elicit physiological and psychophysical adaptations that improve tolerance and exercise performance in the heat. Heat can be imposed in various ways, including exercise in the heat, hot water immersion, or passive exposure to hot air (e.g., sauna). The physical requirements of each sport will determine the impact that the heat has on performance, and the adaptations required from HA to mitigate these effects. This review focuses on one key adaptation, plasma volume expansion (PVE), and how the mode of HA may affect the kinetics of adaptation. PVE constitutes a primary HA-mediated adaptation and contributes to functional adaptations (e.g., lower heart rate and increased heat loss capacity), which may be particularly important in athletes of “sub-elite” cardiorespiratory fitness (e.g., team sports), alongside athletes of prolonged endurance events. This review: i) highlights the ability of exercise in the heat, hot-water immersion, and passive hot air to expand PV, providing the first quantitative assessment of the efficacy of different heating modes; ii) discusses how this may apply to athletes at Tokyo 2020; and iii) provides recommendations regarding the protocol of HA and the prospect for achieving PVE (and the related outcomes).\",\"PeriodicalId\":36837,\"journal\":{\"name\":\"Temperature\",\"volume\":\" \",\"pages\":\"129-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23328940.2019.1653736\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Temperature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23328940.2019.1653736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2019.1653736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 15

摘要

2020年东京奥运会可能是迄今为止最炎热的一届奥运会,因此准备减轻湿热的影响对33个项目中的几个项目的表现至关重要。一个关键的考虑因素是热驯化(HA);反复暴露在高温中,以引起生理和心理物理适应,提高耐受性和在高温下的运动表现。热量可以通过各种方式施加,包括在高温下运动,热水浸泡,或被动暴露在热空气中(例如,桑拿)。每项运动的体能要求将决定热量对运动表现的影响,以及HA对减轻这些影响的适应性要求。这篇综述着重于一个关键的适应,血浆体积膨胀(PVE),以及HA的模式如何影响适应动力学。PVE构成了主要的ha介导的适应,并有助于功能适应(例如,较低的心率和增加的热损失能力),这在“亚精英”心肺健康运动员(例如,团队运动)以及长时间耐力项目的运动员中可能特别重要。这篇综述:i)强调了在高温下运动、热水浸泡和被动热空气对PV的扩张能力,首次对不同加热模式的功效进行了定量评估;ii)讨论这如何适用于2020年东京奥运会的运动员;iii)提供关于HA协议和实现PVE的前景(以及相关结果)的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat-induced hypervolemia: Does the mode of acclimation matter and what are the implications for performance at Tokyo 2020?
ABSTRACT Tokyo 2020 will likely be the most heat stressful Olympics to date, so preparation to mitigate the effects of humid heat will be essential for performance in several of the 33 sports. One key consideration is heat acclimation (HA); the repeated exposure to heat to elicit physiological and psychophysical adaptations that improve tolerance and exercise performance in the heat. Heat can be imposed in various ways, including exercise in the heat, hot water immersion, or passive exposure to hot air (e.g., sauna). The physical requirements of each sport will determine the impact that the heat has on performance, and the adaptations required from HA to mitigate these effects. This review focuses on one key adaptation, plasma volume expansion (PVE), and how the mode of HA may affect the kinetics of adaptation. PVE constitutes a primary HA-mediated adaptation and contributes to functional adaptations (e.g., lower heart rate and increased heat loss capacity), which may be particularly important in athletes of “sub-elite” cardiorespiratory fitness (e.g., team sports), alongside athletes of prolonged endurance events. This review: i) highlights the ability of exercise in the heat, hot-water immersion, and passive hot air to expand PV, providing the first quantitative assessment of the efficacy of different heating modes; ii) discusses how this may apply to athletes at Tokyo 2020; and iii) provides recommendations regarding the protocol of HA and the prospect for achieving PVE (and the related outcomes).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Temperature
Temperature Medicine-Physiology (medical)
CiteScore
10.40
自引率
0.00%
发文量
37
期刊最新文献
When brown fat sparked fire. About the Cover. Prostaglandin E2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature: A frontier journal in cross-scientific approaches to combat climate change. Foot immersion with and without neck cooling reduces self-reported environmental symptoms in older adults exposed to simulated indoor overheating.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1