Ashley G B Willmott, Mark Hayes, Carl A James, Oliver R Gibson, Neil S Maxwell
{"title":"热适应可减轻急性运动热应激时所报告的疲劳感的增加。","authors":"Ashley G B Willmott, Mark Hayes, Carl A James, Oliver R Gibson, Neil S Maxwell","doi":"10.1080/23328940.2019.1664370","DOIUrl":null,"url":null,"abstract":"<p><p>Athletes exercising in heat stress experience increased perceived fatigue acutely, however it is unknown whether heat acclimation (HA) reduces the magnitude of this perceptual response and whether different HA protocols influence the response. This study investigated sensations of fatigue following; acute exercise-heat stress; short- (5-sessions) and medium-term (10-sessions) HA; and between once- (ODHA) and twice-daily HA (TDHA) protocols. Twenty male participants (peak oxygen uptake: 3.75 ± 0.47 L·min-1) completed 10 sessions (60-min cycling at ~2 W·kg-1, 45°C/20% relative humidity) of ODHA (n = 10) or non-consecutive TDHA (n = 10). Sensations of fatigue (General, Physical, Emotional, Mental, Vigor and Total Fatigue) were assessed using the multi-dimensional fatigue scale inventory-short form pre and post session 1, 5 and 10. Heat adaptation was induced following ODHA and TDHA, with reductions in resting rectal temperature and heart rate, and increased plasma volume and sweat rate (P < 0.05). General, Physical and Total Fatigue increased from pre-to-post for session 1 within both groups (P < 0.05). Increases in General, Physical and Total Fatigue were attenuated in session 5 and 10 vs. session 1 of ODHA (P < 0.05). This change only occurred at session 10 of TDHA (P < 0.05). Whilst comparative heat adaptations followed ODHA and TDHA, perceived fatigue is prolonged within TDHA.</p><p><strong>Abbreviations: </strong>∆: Change; ANOVA: Analysis of variance; HA: Heat acclimation; HR: Heart rate; IL-6: Interleukin-6; MFS-SF: Multi-dimensional fatigue symptom inventory-short form (MFSI-SF); MTHA: Medium-term heat acclimation; Na<sup>+</sup>: Sodium; ODHA: Once daily heat acclimation; PV: Plasma volume; RH: Relative humidity; RPE: Rating of perceived exertion; SD: Standard deviation; SE: Standard error of the slope coefficient or intercept; <i>SE<sub>E</sub></i> : Standard error of the estimate for the regression equation; STHA: Short-term heat acclimation; TDHA: Twice daily heat acclimation; TC: Thermal Comfort; T<sub>re</sub>: Rectal temperature; TSS: Thermal sensation; V̇O<sub>2peak</sub>: Peak oxygen uptake; WBSL: whole-body sweat loss.</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":" ","pages":"178-190"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d0/56/KTMP_7_1664370.PMC7518764.pdf","citationCount":"0","resultStr":"{\"title\":\"Heat acclimation attenuates the increased sensations of fatigue reported during acute exercise-heat stress.\",\"authors\":\"Ashley G B Willmott, Mark Hayes, Carl A James, Oliver R Gibson, Neil S Maxwell\",\"doi\":\"10.1080/23328940.2019.1664370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Athletes exercising in heat stress experience increased perceived fatigue acutely, however it is unknown whether heat acclimation (HA) reduces the magnitude of this perceptual response and whether different HA protocols influence the response. This study investigated sensations of fatigue following; acute exercise-heat stress; short- (5-sessions) and medium-term (10-sessions) HA; and between once- (ODHA) and twice-daily HA (TDHA) protocols. Twenty male participants (peak oxygen uptake: 3.75 ± 0.47 L·min-1) completed 10 sessions (60-min cycling at ~2 W·kg-1, 45°C/20% relative humidity) of ODHA (n = 10) or non-consecutive TDHA (n = 10). Sensations of fatigue (General, Physical, Emotional, Mental, Vigor and Total Fatigue) were assessed using the multi-dimensional fatigue scale inventory-short form pre and post session 1, 5 and 10. Heat adaptation was induced following ODHA and TDHA, with reductions in resting rectal temperature and heart rate, and increased plasma volume and sweat rate (P < 0.05). General, Physical and Total Fatigue increased from pre-to-post for session 1 within both groups (P < 0.05). Increases in General, Physical and Total Fatigue were attenuated in session 5 and 10 vs. session 1 of ODHA (P < 0.05). This change only occurred at session 10 of TDHA (P < 0.05). Whilst comparative heat adaptations followed ODHA and TDHA, perceived fatigue is prolonged within TDHA.</p><p><strong>Abbreviations: </strong>∆: Change; ANOVA: Analysis of variance; HA: Heat acclimation; HR: Heart rate; IL-6: Interleukin-6; MFS-SF: Multi-dimensional fatigue symptom inventory-short form (MFSI-SF); MTHA: Medium-term heat acclimation; Na<sup>+</sup>: Sodium; ODHA: Once daily heat acclimation; PV: Plasma volume; RH: Relative humidity; RPE: Rating of perceived exertion; SD: Standard deviation; SE: Standard error of the slope coefficient or intercept; <i>SE<sub>E</sub></i> : Standard error of the estimate for the regression equation; STHA: Short-term heat acclimation; TDHA: Twice daily heat acclimation; TC: Thermal Comfort; T<sub>re</sub>: Rectal temperature; TSS: Thermal sensation; V̇O<sub>2peak</sub>: Peak oxygen uptake; WBSL: whole-body sweat loss.</p>\",\"PeriodicalId\":36837,\"journal\":{\"name\":\"Temperature\",\"volume\":\" \",\"pages\":\"178-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d0/56/KTMP_7_1664370.PMC7518764.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Temperature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23328940.2019.1664370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2019.1664370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Heat acclimation attenuates the increased sensations of fatigue reported during acute exercise-heat stress.
Athletes exercising in heat stress experience increased perceived fatigue acutely, however it is unknown whether heat acclimation (HA) reduces the magnitude of this perceptual response and whether different HA protocols influence the response. This study investigated sensations of fatigue following; acute exercise-heat stress; short- (5-sessions) and medium-term (10-sessions) HA; and between once- (ODHA) and twice-daily HA (TDHA) protocols. Twenty male participants (peak oxygen uptake: 3.75 ± 0.47 L·min-1) completed 10 sessions (60-min cycling at ~2 W·kg-1, 45°C/20% relative humidity) of ODHA (n = 10) or non-consecutive TDHA (n = 10). Sensations of fatigue (General, Physical, Emotional, Mental, Vigor and Total Fatigue) were assessed using the multi-dimensional fatigue scale inventory-short form pre and post session 1, 5 and 10. Heat adaptation was induced following ODHA and TDHA, with reductions in resting rectal temperature and heart rate, and increased plasma volume and sweat rate (P < 0.05). General, Physical and Total Fatigue increased from pre-to-post for session 1 within both groups (P < 0.05). Increases in General, Physical and Total Fatigue were attenuated in session 5 and 10 vs. session 1 of ODHA (P < 0.05). This change only occurred at session 10 of TDHA (P < 0.05). Whilst comparative heat adaptations followed ODHA and TDHA, perceived fatigue is prolonged within TDHA.
Abbreviations: ∆: Change; ANOVA: Analysis of variance; HA: Heat acclimation; HR: Heart rate; IL-6: Interleukin-6; MFS-SF: Multi-dimensional fatigue symptom inventory-short form (MFSI-SF); MTHA: Medium-term heat acclimation; Na+: Sodium; ODHA: Once daily heat acclimation; PV: Plasma volume; RH: Relative humidity; RPE: Rating of perceived exertion; SD: Standard deviation; SE: Standard error of the slope coefficient or intercept; SEE : Standard error of the estimate for the regression equation; STHA: Short-term heat acclimation; TDHA: Twice daily heat acclimation; TC: Thermal Comfort; Tre: Rectal temperature; TSS: Thermal sensation; V̇O2peak: Peak oxygen uptake; WBSL: whole-body sweat loss.