人脑性别差异的发展。

IF 2 4区 医学 Q3 NEUROSCIENCES Cognitive Neuroscience Pub Date : 2021-07-01 Epub Date: 2020-09-09 DOI:10.1080/17588928.2020.1800617
Florian Kurth, Christian Gaser, Eileen Luders
{"title":"人脑性别差异的发展。","authors":"Florian Kurth, Christian Gaser, Eileen Luders","doi":"10.1080/17588928.2020.1800617","DOIUrl":null,"url":null,"abstract":"<p><p>Sex differences in brain anatomy have been described from early childhood through late adulthood, but without any clear consensus among studies. Here, we applied a machine learning approach to estimate 'Brain Sex' using a continuous (rather than binary) classifier in 162 boys and 185 girls aged between 5 and 18 years. Changes in the estimated sex differences over time at different age groups were subsequently calculated using a sliding window approach. We hypothesized that males and females would differ in brain structure already during childhood, but that these differences will become even more pronounced with increasing age, particularly during adolescence. Overall, the classifier achieved a good performance, with an accuracy of 80.4% and an AUC of 0.897 across all age groups. Assessing changes in the estimated sex with age revealed a growing difference between the sexes with increasing age. That is, the very large effect size of d = 1.2 which was already evident during childhood increased even further from age 11 onward, and eventually reached an effect size of d = 1.6 at age 17. Altogether these findings suggest a systematic sex difference in brain structure already during childhood, and a subsequent increase of this difference during adolescence.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":"12 3-4","pages":"155-162"},"PeriodicalIF":2.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510853/pdf/nihms-1621702.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of sex differences in the human brain.\",\"authors\":\"Florian Kurth, Christian Gaser, Eileen Luders\",\"doi\":\"10.1080/17588928.2020.1800617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sex differences in brain anatomy have been described from early childhood through late adulthood, but without any clear consensus among studies. Here, we applied a machine learning approach to estimate 'Brain Sex' using a continuous (rather than binary) classifier in 162 boys and 185 girls aged between 5 and 18 years. Changes in the estimated sex differences over time at different age groups were subsequently calculated using a sliding window approach. We hypothesized that males and females would differ in brain structure already during childhood, but that these differences will become even more pronounced with increasing age, particularly during adolescence. Overall, the classifier achieved a good performance, with an accuracy of 80.4% and an AUC of 0.897 across all age groups. Assessing changes in the estimated sex with age revealed a growing difference between the sexes with increasing age. That is, the very large effect size of d = 1.2 which was already evident during childhood increased even further from age 11 onward, and eventually reached an effect size of d = 1.6 at age 17. Altogether these findings suggest a systematic sex difference in brain structure already during childhood, and a subsequent increase of this difference during adolescence.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\"12 3-4\",\"pages\":\"155-162\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510853/pdf/nihms-1621702.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2020.1800617\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2020.1800617","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从孩提时代到成年晚期,人们一直在描述大脑解剖学上的性别差异,但各项研究之间并没有达成明确的共识。在这里,我们采用了一种机器学习方法,使用连续(而非二元)分类器来估计年龄在 5 到 18 岁之间的 162 名男孩和 185 名女孩的 "大脑性别"。随后,我们采用滑动窗口法计算了不同年龄组的估计性别差异随时间的变化。我们假设,男性和女性的大脑结构在童年时期就存在差异,但随着年龄的增长,尤其是青春期,这些差异会变得更加明显。总体而言,分类器的性能良好,在所有年龄组中的准确率为 80.4%,AUC 为 0.897。在评估估计性别随年龄的变化时发现,随着年龄的增长,性别差异越来越大。也就是说,在童年时期就已经非常明显的 d = 1.2 的巨大效应量从 11 岁开始进一步增加,最终在 17 岁时达到了 d = 1.6 的效应量。总之,这些研究结果表明,在儿童时期,大脑结构就已经存在系统性的性别差异,而在青春期,这种差异会进一步扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of sex differences in the human brain.

Sex differences in brain anatomy have been described from early childhood through late adulthood, but without any clear consensus among studies. Here, we applied a machine learning approach to estimate 'Brain Sex' using a continuous (rather than binary) classifier in 162 boys and 185 girls aged between 5 and 18 years. Changes in the estimated sex differences over time at different age groups were subsequently calculated using a sliding window approach. We hypothesized that males and females would differ in brain structure already during childhood, but that these differences will become even more pronounced with increasing age, particularly during adolescence. Overall, the classifier achieved a good performance, with an accuracy of 80.4% and an AUC of 0.897 across all age groups. Assessing changes in the estimated sex with age revealed a growing difference between the sexes with increasing age. That is, the very large effect size of d = 1.2 which was already evident during childhood increased even further from age 11 onward, and eventually reached an effect size of d = 1.6 at age 17. Altogether these findings suggest a systematic sex difference in brain structure already during childhood, and a subsequent increase of this difference during adolescence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neuroscience
Cognitive Neuroscience NEUROSCIENCES-
CiteScore
3.60
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.
期刊最新文献
Visuo-spatial working memory abilities modulate mental rotation: Evidence from event-related potentials. Theoretical strategies for an embodied cognitive neuroscience: Mechanistic explanations of brain-body-environment systems. Beyond embodiment: Rethinking the integration of cognitive neuroscience and mechanistic explanations. Embodied (4EA) cognitive computational neuroscience. How to build a better 4E cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1