个体、边界和移植物抗宿主病

H. Joachim Deeg
{"title":"个体、边界和移植物抗宿主病","authors":"H. Joachim Deeg","doi":"10.1016/j.bbmt.2020.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Hematopoietic cell transplantation generates new individuals, transplant chimeras, composed of 2 genetic partners—the patient and donor-derived cells—no longer restricted by their original genomes. Interactions of donor-derived and recipient cells occur prominently at the boundary of the recipient with a third partner, the microbiome, in particular skin and intestinal tract, leading to disruption of microbiome homeostasis. These interactions of donor and patient cells at the boundary set the stage for the development of graft-versus-host disease, an expression of the defense of individuality by recipient and donor. Establishment of tolerance and return of homeostasis at the boundary will allow for the survival of the new integrated, physiologic individual.</p></div>","PeriodicalId":9165,"journal":{"name":"Biology of Blood and Marrow Transplantation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbmt.2020.09.001","citationCount":"1","resultStr":"{\"title\":\"Individuals, Boundaries, and Graft-versus-Host Disease\",\"authors\":\"H. Joachim Deeg\",\"doi\":\"10.1016/j.bbmt.2020.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hematopoietic cell transplantation generates new individuals, transplant chimeras, composed of 2 genetic partners—the patient and donor-derived cells—no longer restricted by their original genomes. Interactions of donor-derived and recipient cells occur prominently at the boundary of the recipient with a third partner, the microbiome, in particular skin and intestinal tract, leading to disruption of microbiome homeostasis. These interactions of donor and patient cells at the boundary set the stage for the development of graft-versus-host disease, an expression of the defense of individuality by recipient and donor. Establishment of tolerance and return of homeostasis at the boundary will allow for the survival of the new integrated, physiologic individual.</p></div>\",\"PeriodicalId\":9165,\"journal\":{\"name\":\"Biology of Blood and Marrow Transplantation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bbmt.2020.09.001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Blood and Marrow Transplantation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1083879120305863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Blood and Marrow Transplantation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1083879120305863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

造血细胞移植产生新的个体,移植嵌合体,由2个基因伴侣组成-患者和供体来源的细胞-不再受其原始基因组的限制。供体来源细胞和受体细胞的相互作用主要发生在受体与第三个伙伴,微生物组,特别是皮肤和肠道的边界,导致微生物组稳态的破坏。这些供体和患者细胞在边界的相互作用为移植物抗宿主病的发展奠定了基础,这是受体和供体对个体防御的一种表达。在边界处建立耐受性和恢复体内平衡将允许新的完整的生理个体的生存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individuals, Boundaries, and Graft-versus-Host Disease

Hematopoietic cell transplantation generates new individuals, transplant chimeras, composed of 2 genetic partners—the patient and donor-derived cells—no longer restricted by their original genomes. Interactions of donor-derived and recipient cells occur prominently at the boundary of the recipient with a third partner, the microbiome, in particular skin and intestinal tract, leading to disruption of microbiome homeostasis. These interactions of donor and patient cells at the boundary set the stage for the development of graft-versus-host disease, an expression of the defense of individuality by recipient and donor. Establishment of tolerance and return of homeostasis at the boundary will allow for the survival of the new integrated, physiologic individual.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
1061
审稿时长
3-6 weeks
期刊介绍: Biology of Blood and Marrow Transplantation publishes original research reports, reviews, editorials, commentaries, letters to the editor, and hypotheses and is the official publication of the American Society for Transplantation and Cellular Therapy. The journal focuses on current technology and knowledge in the interdisciplinary field of hematopoetic stem cell transplantation.
期刊最新文献
Table of Contents Editorial Board Goal-Oriented Monitoring of Cyclosporine Is Effective for Graft-versus-Host Disease Prevention after Hematopoietic Stem Cell Transplantation in Sickle Cell Disease and Thalassemia Major Early Mixed Lymphoid Donor/Host Chimerism is Associated with Improved Transplant Outcome in Patients with Primary or Secondary Myelofibrosis Real-World Issues and Potential Solutions in Hematopoietic Cell Transplantation during the COVID-19 Pandemic: Perspectives from the Worldwide Network for Blood and Marrow Transplantation and Center for International Blood and Marrow Transplant Research Health Services and International Studies Committee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1