新记忆编码过程中前额叶-海马体的相互作用。

Brain and neuroscience advances Pub Date : 2020-06-08 eCollection Date: 2020-01-01 DOI:10.1177/2398212820925580
Kaori Takehara-Nishiuchi
{"title":"新记忆编码过程中前额叶-海马体的相互作用。","authors":"Kaori Takehara-Nishiuchi","doi":"10.1177/2398212820925580","DOIUrl":null,"url":null,"abstract":"The hippocampus rapidly forms associations among ongoing events as they unfold and later instructs the gradual stabilisation of their memory traces in the neocortex. Although this two-stage model of memory consolidation has gained substantial empirical support, parallel evidence from rodent studies suggests that the neocortex, in particular the medial prefrontal cortex, might work in concert with the hippocampus during the encoding of new experiences. This opinion article first summarises findings from behavioural, electrophysiological, and molecular studies in rodents that uncovered immediate changes in synaptic connectivity and neural selectivity in the medial prefrontal cortex during and shortly after novel experiences. Based on these findings, I then propose a model positing that the medial prefrontal cortex and hippocampus might use different strategies to encode information during novel experiences, leading to the parallel formation of complementary memory traces in the two regions. The hippocampus captures moment-to-moment changes in incoming inputs with accurate spatial and temporal contexts, whereas the medial prefrontal cortex may sort the inputs based on their similarity and integrates them over time. These processes of pattern recognition and integration enable the medial prefrontal cortex to, in real time, capture the central content of novel experience and emit relevancy signal that helps to enhance the contrast between the relevant and incidental features of the experience. This hypothesis serves as a framework for future investigations on the potential top-down modulation that the medial prefrontal cortex may exert over the hippocampus to enable the selective, perhaps more intelligent encoding of new information.","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820925580"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212820925580","citationCount":"26","resultStr":"{\"title\":\"Prefrontal-hippocampal interaction during the encoding of new memories.\",\"authors\":\"Kaori Takehara-Nishiuchi\",\"doi\":\"10.1177/2398212820925580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hippocampus rapidly forms associations among ongoing events as they unfold and later instructs the gradual stabilisation of their memory traces in the neocortex. Although this two-stage model of memory consolidation has gained substantial empirical support, parallel evidence from rodent studies suggests that the neocortex, in particular the medial prefrontal cortex, might work in concert with the hippocampus during the encoding of new experiences. This opinion article first summarises findings from behavioural, electrophysiological, and molecular studies in rodents that uncovered immediate changes in synaptic connectivity and neural selectivity in the medial prefrontal cortex during and shortly after novel experiences. Based on these findings, I then propose a model positing that the medial prefrontal cortex and hippocampus might use different strategies to encode information during novel experiences, leading to the parallel formation of complementary memory traces in the two regions. The hippocampus captures moment-to-moment changes in incoming inputs with accurate spatial and temporal contexts, whereas the medial prefrontal cortex may sort the inputs based on their similarity and integrates them over time. These processes of pattern recognition and integration enable the medial prefrontal cortex to, in real time, capture the central content of novel experience and emit relevancy signal that helps to enhance the contrast between the relevant and incidental features of the experience. This hypothesis serves as a framework for future investigations on the potential top-down modulation that the medial prefrontal cortex may exert over the hippocampus to enable the selective, perhaps more intelligent encoding of new information.\",\"PeriodicalId\":72444,\"journal\":{\"name\":\"Brain and neuroscience advances\",\"volume\":\"4 \",\"pages\":\"2398212820925580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2398212820925580\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and neuroscience advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2398212820925580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2398212820925580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

海马体在正在发生的事件中迅速形成关联,随后指示新皮层中记忆痕迹的逐渐稳定。虽然这种记忆巩固的两阶段模型已经获得了大量的经验支持,但来自啮齿动物研究的平行证据表明,新皮层,特别是内侧前额叶皮层,可能在编码新经历的过程中与海马体协同工作。这篇观点文章首先总结了啮齿动物的行为、电生理和分子研究的发现,这些研究揭示了在新体验期间和之后不久,内侧前额叶皮层突触连通性和神经选择性的立即变化。基于这些发现,我提出了一个模型,假设内侧前额叶皮层和海马体可能在新经历中使用不同的策略来编码信息,导致两个区域平行形成互补的记忆痕迹。海马体在准确的空间和时间背景下捕捉输入的瞬间变化,而内侧前额叶皮层可能根据输入的相似性对输入进行分类,并随着时间的推移进行整合。这些模式识别和整合过程使内侧前额叶皮层能够实时捕捉新体验的中心内容,并发出相关信号,有助于增强体验的相关特征和附带特征之间的对比。这一假设为未来研究内侧前额皮质可能对海马体施加的自上而下的调节提供了一个框架,从而使新信息的选择性编码成为可能,也许更智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prefrontal-hippocampal interaction during the encoding of new memories.
The hippocampus rapidly forms associations among ongoing events as they unfold and later instructs the gradual stabilisation of their memory traces in the neocortex. Although this two-stage model of memory consolidation has gained substantial empirical support, parallel evidence from rodent studies suggests that the neocortex, in particular the medial prefrontal cortex, might work in concert with the hippocampus during the encoding of new experiences. This opinion article first summarises findings from behavioural, electrophysiological, and molecular studies in rodents that uncovered immediate changes in synaptic connectivity and neural selectivity in the medial prefrontal cortex during and shortly after novel experiences. Based on these findings, I then propose a model positing that the medial prefrontal cortex and hippocampus might use different strategies to encode information during novel experiences, leading to the parallel formation of complementary memory traces in the two regions. The hippocampus captures moment-to-moment changes in incoming inputs with accurate spatial and temporal contexts, whereas the medial prefrontal cortex may sort the inputs based on their similarity and integrates them over time. These processes of pattern recognition and integration enable the medial prefrontal cortex to, in real time, capture the central content of novel experience and emit relevancy signal that helps to enhance the contrast between the relevant and incidental features of the experience. This hypothesis serves as a framework for future investigations on the potential top-down modulation that the medial prefrontal cortex may exert over the hippocampus to enable the selective, perhaps more intelligent encoding of new information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Review of the gastric physiology of disgust: Proto-nausea as an under-explored facet of the gut-brain axis. From neurophobia to neurophilia: Fostering confidence and passion for neurology in medical students. Are all neuroscience degrees the same? A comparison of undergraduate neuroscience degrees across the United Kingdom. Centralising a loss of consciousness to the central medial thalamus. Genetically modified animals as models of neurodevelopmental conditions: A review of systematic review reporting quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1