MicroRNA-497升高或LRG1敲低通过TGF-β1/Smads信号通路促进骨质疏松症成骨细胞增殖和胶原合成。

IF 5.3 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Cellular and Molecular Medicine Pub Date : 2020-11-01 Epub Date: 2020-09-24 DOI:10.1111/jcmm.15826
ZhengTao Gu, DengHui Xie, CaiQiang Huang, Rui Ding, RongKai Zhang, QingChu Li, ChuangXin Lin, YiYan Qiu
{"title":"MicroRNA-497升高或LRG1敲低通过TGF-β1/Smads信号通路促进骨质疏松症成骨细胞增殖和胶原合成。","authors":"ZhengTao Gu,&nbsp;DengHui Xie,&nbsp;CaiQiang Huang,&nbsp;Rui Ding,&nbsp;RongKai Zhang,&nbsp;QingChu Li,&nbsp;ChuangXin Lin,&nbsp;YiYan Qiu","doi":"10.1111/jcmm.15826","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) have been corroborated to engage in the process of cellular activities in osteoporosis. However, few researches have been conducted to expose the integrated role of miR-497, leucine-rich alpha-2-glycoprotein-1 (LRG1) and transforming growth factor beta 1 (TGF-β1)/Smads signalling pathway in osteoporosis. Thereafter, the study is set out to delve into miR-497/LRG1/TGF-β1/Smads signalling pathway axis in osteoporosis. Osteoporosis bone tissues and normal bone tissues were collected. Rat osteoporosis models were constructed via ovariectomy. Model rats were injected with restored miR-497 or depleted LRG1 to explore their roles in osteoporosis. Rat osteoblasts were extracted from osteoporosis rats and transfected with restored miR-497 or depleted LRG1 for further verification. MiR-497 and LRG1 expression in femoral head tissues and osteoblasts of osteoporosis rats were detected. TGF-β1/Smads signalling pathway-related factors were detected. MiR-497 was poorly expressed while LRG1 was highly expressed and TGF-β1/Smads signalling pathway activation was inhibited in osteoporosis. MiR-497 up-regulation or LRG1 down-regulation activated TGF-β1/Smads signalling pathway, promoted collagen type 1 synthesis and suppressed oxidative stress in femoral head tissues in osteoporosis. MiR-497 restoration or LRG1 knockdown activated TGF-β1/Smads signalling pathway, promoted viability and suppressed apoptosis of osteoblasts in osteoporosis. Our study suggests that miR-497 up-regulation or LRG1 down-regulation promotes osteoblast viability and collagen synthesis via activating TGF-β1/Smads signalling pathway, which may provide a novel reference for osteoporosis treatment.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15826","citationCount":"17","resultStr":"{\"title\":\"MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway.\",\"authors\":\"ZhengTao Gu,&nbsp;DengHui Xie,&nbsp;CaiQiang Huang,&nbsp;Rui Ding,&nbsp;RongKai Zhang,&nbsp;QingChu Li,&nbsp;ChuangXin Lin,&nbsp;YiYan Qiu\",\"doi\":\"10.1111/jcmm.15826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) have been corroborated to engage in the process of cellular activities in osteoporosis. However, few researches have been conducted to expose the integrated role of miR-497, leucine-rich alpha-2-glycoprotein-1 (LRG1) and transforming growth factor beta 1 (TGF-β1)/Smads signalling pathway in osteoporosis. Thereafter, the study is set out to delve into miR-497/LRG1/TGF-β1/Smads signalling pathway axis in osteoporosis. Osteoporosis bone tissues and normal bone tissues were collected. Rat osteoporosis models were constructed via ovariectomy. Model rats were injected with restored miR-497 or depleted LRG1 to explore their roles in osteoporosis. Rat osteoblasts were extracted from osteoporosis rats and transfected with restored miR-497 or depleted LRG1 for further verification. MiR-497 and LRG1 expression in femoral head tissues and osteoblasts of osteoporosis rats were detected. TGF-β1/Smads signalling pathway-related factors were detected. MiR-497 was poorly expressed while LRG1 was highly expressed and TGF-β1/Smads signalling pathway activation was inhibited in osteoporosis. MiR-497 up-regulation or LRG1 down-regulation activated TGF-β1/Smads signalling pathway, promoted collagen type 1 synthesis and suppressed oxidative stress in femoral head tissues in osteoporosis. MiR-497 restoration or LRG1 knockdown activated TGF-β1/Smads signalling pathway, promoted viability and suppressed apoptosis of osteoblasts in osteoporosis. Our study suggests that miR-497 up-regulation or LRG1 down-regulation promotes osteoblast viability and collagen synthesis via activating TGF-β1/Smads signalling pathway, which may provide a novel reference for osteoporosis treatment.</p>\",\"PeriodicalId\":15215,\"journal\":{\"name\":\"Journal of Cellular and Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/jcmm.15826\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jcmm.15826\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.15826","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 17

摘要

MicroRNAs (miRNAs)已被证实参与骨质疏松症的细胞活动过程。然而,很少有研究揭示miR-497、富亮氨酸α -2糖蛋白-1 (LRG1)和转化生长因子β1 (TGF-β1)/Smads信号通路在骨质疏松症中的综合作用。随后,本研究开始深入研究miR-497/LRG1/TGF-β1/Smads信号通路轴在骨质疏松症中的作用。采集骨质疏松骨组织和正常骨组织。通过切除卵巢建立大鼠骨质疏松模型。给模型大鼠注射恢复的miR-497或缺失的LRG1,以探索其在骨质疏松症中的作用。从骨质疏松大鼠中提取成骨细胞,转染恢复的miR-497或耗尽的LRG1进行进一步验证。检测MiR-497和LRG1在骨质疏松大鼠股骨头组织和成骨细胞中的表达。检测TGF-β1/Smads信号通路相关因子。在骨质疏松症中MiR-497低表达,LRG1高表达,TGF-β1/Smads信号通路激活受到抑制。MiR-497上调或LRG1下调激活TGF-β1/Smads信号通路,促进1型胶原合成,抑制骨质疏松股骨头组织氧化应激。MiR-497修复或LRG1敲低激活TGF-β1/Smads信号通路,促进骨质疏松成骨细胞活力,抑制细胞凋亡。我们的研究提示miR-497上调或LRG1下调通过激活TGF-β1/Smads信号通路促进成骨细胞活力和胶原合成,可能为骨质疏松症的治疗提供新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway.

MicroRNAs (miRNAs) have been corroborated to engage in the process of cellular activities in osteoporosis. However, few researches have been conducted to expose the integrated role of miR-497, leucine-rich alpha-2-glycoprotein-1 (LRG1) and transforming growth factor beta 1 (TGF-β1)/Smads signalling pathway in osteoporosis. Thereafter, the study is set out to delve into miR-497/LRG1/TGF-β1/Smads signalling pathway axis in osteoporosis. Osteoporosis bone tissues and normal bone tissues were collected. Rat osteoporosis models were constructed via ovariectomy. Model rats were injected with restored miR-497 or depleted LRG1 to explore their roles in osteoporosis. Rat osteoblasts were extracted from osteoporosis rats and transfected with restored miR-497 or depleted LRG1 for further verification. MiR-497 and LRG1 expression in femoral head tissues and osteoblasts of osteoporosis rats were detected. TGF-β1/Smads signalling pathway-related factors were detected. MiR-497 was poorly expressed while LRG1 was highly expressed and TGF-β1/Smads signalling pathway activation was inhibited in osteoporosis. MiR-497 up-regulation or LRG1 down-regulation activated TGF-β1/Smads signalling pathway, promoted collagen type 1 synthesis and suppressed oxidative stress in femoral head tissues in osteoporosis. MiR-497 restoration or LRG1 knockdown activated TGF-β1/Smads signalling pathway, promoted viability and suppressed apoptosis of osteoblasts in osteoporosis. Our study suggests that miR-497 up-regulation or LRG1 down-regulation promotes osteoblast viability and collagen synthesis via activating TGF-β1/Smads signalling pathway, which may provide a novel reference for osteoporosis treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
1.90%
发文量
496
审稿时长
28 weeks
期刊介绍: Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.
期刊最新文献
Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. Application of Joint Mobilizing Chuna Following Tibial Plateau Fracture Surgery: A Study of Two Cases Korean Domestic Trends of Clinical Research and Direction of Intervention for Fibromyalgia Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. Loganetin and 5-fluorouracil synergistically inhibit the carcinogenesis of gastric cancer cells via down-regulation of the Wnt/β-catenin pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1