衡量维基百科中科学参考文献的质量:对超过80万篇科学文章超过1.15亿次引用的分析。

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Journal Pub Date : 2021-07-01 Epub Date: 2020-11-19 DOI:10.1111/febs.15608
Joshua M Nicholson, Ashish Uppala, Matthias Sieber, Peter Grabitz, Milo Mordaunt, Sean C Rife
{"title":"衡量维基百科中科学参考文献的质量:对超过80万篇科学文章超过1.15亿次引用的分析。","authors":"Joshua M Nicholson,&nbsp;Ashish Uppala,&nbsp;Matthias Sieber,&nbsp;Peter Grabitz,&nbsp;Milo Mordaunt,&nbsp;Sean C Rife","doi":"10.1111/febs.15608","DOIUrl":null,"url":null,"abstract":"<p><p>Wikipedia is a widely used online reference work which cites hundreds of thousands of scientific articles across its entries. The quality of these citations has not been previously measured, and such measurements have a bearing on the reliability and quality of the scientific portions of this reference work. Using a novel technique, a massive database of qualitatively described citations, and machine learning algorithms, we analyzed 1 923 575 Wikipedia articles which cited a total of 824 298 scientific articles in our database and found that most scientific articles cited by Wikipedia articles are uncited or untested by subsequent studies, and the remainder show a wide variability in contradicting or supporting evidence. Additionally, we analyzed 51 804 643 scientific articles from journals indexed in the Web of Science and found that similarly most were uncited or untested by subsequent studies, while the remainder show a wide variability in contradicting or supporting evidence.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 14","pages":"4242-4248"},"PeriodicalIF":5.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15608","citationCount":"6","resultStr":"{\"title\":\"Measuring the quality of scientific references in Wikipedia: an analysis of more than 115M citations to over 800 000 scientific articles.\",\"authors\":\"Joshua M Nicholson,&nbsp;Ashish Uppala,&nbsp;Matthias Sieber,&nbsp;Peter Grabitz,&nbsp;Milo Mordaunt,&nbsp;Sean C Rife\",\"doi\":\"10.1111/febs.15608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wikipedia is a widely used online reference work which cites hundreds of thousands of scientific articles across its entries. The quality of these citations has not been previously measured, and such measurements have a bearing on the reliability and quality of the scientific portions of this reference work. Using a novel technique, a massive database of qualitatively described citations, and machine learning algorithms, we analyzed 1 923 575 Wikipedia articles which cited a total of 824 298 scientific articles in our database and found that most scientific articles cited by Wikipedia articles are uncited or untested by subsequent studies, and the remainder show a wide variability in contradicting or supporting evidence. Additionally, we analyzed 51 804 643 scientific articles from journals indexed in the Web of Science and found that similarly most were uncited or untested by subsequent studies, while the remainder show a wide variability in contradicting or supporting evidence.</p>\",\"PeriodicalId\":12261,\"journal\":{\"name\":\"FEBS Journal\",\"volume\":\"288 14\",\"pages\":\"4242-4248\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/febs.15608\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.15608\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15608","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

维基百科是一个被广泛使用的在线参考网站,在其条目中引用了数十万篇科学文章。这些引用的质量以前没有被测量过,而这些测量对参考工作的科学部分的可靠性和质量有影响。使用一种新颖的技术,一个大规模的定性描述引用数据库和机器学习算法,我们分析了1,923575篇维基百科文章,这些文章引用了我们数据库中的824298篇科学文章,发现维基百科文章引用的大多数科学文章未被引用或未被后续研究验证,其余的科学文章在反驳或支持证据方面表现出很大的差异。此外,我们分析了科学网索引期刊上的51 804 643篇科学文章,发现同样大多数未被引用或未被后续研究验证,而其余的则在反驳或支持证据方面表现出很大的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring the quality of scientific references in Wikipedia: an analysis of more than 115M citations to over 800 000 scientific articles.

Wikipedia is a widely used online reference work which cites hundreds of thousands of scientific articles across its entries. The quality of these citations has not been previously measured, and such measurements have a bearing on the reliability and quality of the scientific portions of this reference work. Using a novel technique, a massive database of qualitatively described citations, and machine learning algorithms, we analyzed 1 923 575 Wikipedia articles which cited a total of 824 298 scientific articles in our database and found that most scientific articles cited by Wikipedia articles are uncited or untested by subsequent studies, and the remainder show a wide variability in contradicting or supporting evidence. Additionally, we analyzed 51 804 643 scientific articles from journals indexed in the Web of Science and found that similarly most were uncited or untested by subsequent studies, while the remainder show a wide variability in contradicting or supporting evidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
期刊最新文献
Autophagy and tumorigenesis. Migrasome biogenesis and functions. Nuclear speckles: dynamic hubs of gene expression regulation. Molecular mechanisms and biological roles of GOMED. Autophagy in the retinal pigment epithelium: a new vision and future challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1