Pollen K Yeung, Sheyda Mohammadizadeh, Fatemeh Akhoundi, Kelsey Mann, Remigius U Agu, Thomas Pulinilkunnil
{"title":"阿霉素和异丙肾上腺素诱导的心血管毒性中5'-三磷酸腺苷的血液动力学评价和体内分解代谢。","authors":"Pollen K Yeung, Sheyda Mohammadizadeh, Fatemeh Akhoundi, Kelsey Mann, Remigius U Agu, Thomas Pulinilkunnil","doi":"10.2174/1872312814666201022103802","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Previous studies have shown that catabolism of adenosine 5'-triphosphate (ATP) in systemic blood is a potential surrogate biomarker for cardiovascular toxicity. We compared the acute toxicity of high doses of doxorubicin (DOX) and isoproterenol (ISO) on hemodynamics and ATP catabolism in the systemic circulation.</p><p><strong>Methods: </strong>sprague Dawley (SD) rats (n = 8 - 11) were each given either a single dose of 30 mg/kg ISO, or a twice-daily dose of 10 mg/kg of DOX or 4 doses of normal saline (control) by subcutaneous injection. Blood samples were collected up to 6 hours for measuring concentrations of ATP and its catabolites. Hemodynamics was recorded continuously. The difference was considered significant at p < 0.05 (ANOVA).</p><p><strong>Results: </strong>Mortality was 1/8, 5/11, and 0/11 for the DOX, ISO, and control groups, respectively. Systolic blood pressure was significantly lower in the DOX and ISO treated rats than in control measured at the last recorded time (76 ± 9 for DOX vs. 42 ± 8 for ISO vs. 103 ± 5 mmHg for control, p < 0.05 for all). Blood pressure fell gradually after the final injection for both DOX and control groups, but abruptly after ISO, followed by a rebound and then gradual decline till the end of the experiment. Heart rate was significantly higher after ISO, but there were no differences between the DOX and control rats (p > 0.05). RBC concentrations of ADP and AMP, and plasma concentrations of adenosine and uric acid were significantly higher in the ISO group. In contrast, hypoxanthine concentrations were significantly higher in the DOX treated group (p < 0.05).</p><p><strong>Conclusion: </strong>Acute cardiovascular toxicity induced by DOX and ISO may be measured by changes in hemodynamics and breakdown of ATP and adenosine in the systemic circulation, albeit a notable qualitative and quantitative difference was observed.</p>","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":"14 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemodynamic Assessment and In vivo Catabolism of Adenosine 5'-triphosphate in Doxorubicin or Isoproterenol-induced Cardiovascular Toxicity.\",\"authors\":\"Pollen K Yeung, Sheyda Mohammadizadeh, Fatemeh Akhoundi, Kelsey Mann, Remigius U Agu, Thomas Pulinilkunnil\",\"doi\":\"10.2174/1872312814666201022103802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Previous studies have shown that catabolism of adenosine 5'-triphosphate (ATP) in systemic blood is a potential surrogate biomarker for cardiovascular toxicity. We compared the acute toxicity of high doses of doxorubicin (DOX) and isoproterenol (ISO) on hemodynamics and ATP catabolism in the systemic circulation.</p><p><strong>Methods: </strong>sprague Dawley (SD) rats (n = 8 - 11) were each given either a single dose of 30 mg/kg ISO, or a twice-daily dose of 10 mg/kg of DOX or 4 doses of normal saline (control) by subcutaneous injection. Blood samples were collected up to 6 hours for measuring concentrations of ATP and its catabolites. Hemodynamics was recorded continuously. The difference was considered significant at p < 0.05 (ANOVA).</p><p><strong>Results: </strong>Mortality was 1/8, 5/11, and 0/11 for the DOX, ISO, and control groups, respectively. Systolic blood pressure was significantly lower in the DOX and ISO treated rats than in control measured at the last recorded time (76 ± 9 for DOX vs. 42 ± 8 for ISO vs. 103 ± 5 mmHg for control, p < 0.05 for all). Blood pressure fell gradually after the final injection for both DOX and control groups, but abruptly after ISO, followed by a rebound and then gradual decline till the end of the experiment. Heart rate was significantly higher after ISO, but there were no differences between the DOX and control rats (p > 0.05). RBC concentrations of ADP and AMP, and plasma concentrations of adenosine and uric acid were significantly higher in the ISO group. In contrast, hypoxanthine concentrations were significantly higher in the DOX treated group (p < 0.05).</p><p><strong>Conclusion: </strong>Acute cardiovascular toxicity induced by DOX and ISO may be measured by changes in hemodynamics and breakdown of ATP and adenosine in the systemic circulation, albeit a notable qualitative and quantitative difference was observed.</p>\",\"PeriodicalId\":11339,\"journal\":{\"name\":\"Drug metabolism letters\",\"volume\":\"14 1\",\"pages\":\"80-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872312814666201022103802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312814666201022103802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hemodynamic Assessment and In vivo Catabolism of Adenosine 5'-triphosphate in Doxorubicin or Isoproterenol-induced Cardiovascular Toxicity.
Objective: Previous studies have shown that catabolism of adenosine 5'-triphosphate (ATP) in systemic blood is a potential surrogate biomarker for cardiovascular toxicity. We compared the acute toxicity of high doses of doxorubicin (DOX) and isoproterenol (ISO) on hemodynamics and ATP catabolism in the systemic circulation.
Methods: sprague Dawley (SD) rats (n = 8 - 11) were each given either a single dose of 30 mg/kg ISO, or a twice-daily dose of 10 mg/kg of DOX or 4 doses of normal saline (control) by subcutaneous injection. Blood samples were collected up to 6 hours for measuring concentrations of ATP and its catabolites. Hemodynamics was recorded continuously. The difference was considered significant at p < 0.05 (ANOVA).
Results: Mortality was 1/8, 5/11, and 0/11 for the DOX, ISO, and control groups, respectively. Systolic blood pressure was significantly lower in the DOX and ISO treated rats than in control measured at the last recorded time (76 ± 9 for DOX vs. 42 ± 8 for ISO vs. 103 ± 5 mmHg for control, p < 0.05 for all). Blood pressure fell gradually after the final injection for both DOX and control groups, but abruptly after ISO, followed by a rebound and then gradual decline till the end of the experiment. Heart rate was significantly higher after ISO, but there were no differences between the DOX and control rats (p > 0.05). RBC concentrations of ADP and AMP, and plasma concentrations of adenosine and uric acid were significantly higher in the ISO group. In contrast, hypoxanthine concentrations were significantly higher in the DOX treated group (p < 0.05).
Conclusion: Acute cardiovascular toxicity induced by DOX and ISO may be measured by changes in hemodynamics and breakdown of ATP and adenosine in the systemic circulation, albeit a notable qualitative and quantitative difference was observed.
期刊介绍:
Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.