{"title":"用于计算对数的化学反应网络。","authors":"Chun Tung Chou","doi":"10.1093/synbio/ysx002","DOIUrl":null,"url":null,"abstract":"<p><p>Living cells constantly process information from their living environment. It has recently been shown that a number of cell signaling mechanisms (e.g. G protein-coupled receptor and epidermal growth factor) can be interpreted as computing the logarithm of the ligand concentration. This suggests that logarithm is a fundamental computation primitive in cells. There is also an increasing interest in the synthetic biology community to implement analog computation and computing the logarithm is one such example. The aim of this article is to study how the computation of logarithm can be realized using chemical reaction networks (CRNs). CRNs cannot compute logarithm exactly. A standard method is to use power series or rational function approximation to compute logarithm approximately. Although CRNs can realize these polynomial or rational function computations in a straightforward manner, the issue is that in order to be able to compute logarithm accurately over a large input range, it is necessary to use high-order approximation that results in CRNs with a large number of reactions. This article proposes a novel method to compute logarithm accurately in CRNs while keeping the number of reactions in CRNs low. The proposed method can create CRNs that can compute logarithm to different levels of accuracy by adjusting two design parameters. In this article, we present the chemical reactions required to realize the CRNs for computing logarithm. The key contribution of this article is a novel method to create CRNs that can compute logarithm accurately over a wide input range using only a small number of chemical reactions.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"2 1","pages":"ysx002"},"PeriodicalIF":2.6000,"publicationDate":"2017-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f9/42/ysx002.PMC7513738.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemical reaction networks for computing logarithm.\",\"authors\":\"Chun Tung Chou\",\"doi\":\"10.1093/synbio/ysx002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Living cells constantly process information from their living environment. It has recently been shown that a number of cell signaling mechanisms (e.g. G protein-coupled receptor and epidermal growth factor) can be interpreted as computing the logarithm of the ligand concentration. This suggests that logarithm is a fundamental computation primitive in cells. There is also an increasing interest in the synthetic biology community to implement analog computation and computing the logarithm is one such example. The aim of this article is to study how the computation of logarithm can be realized using chemical reaction networks (CRNs). CRNs cannot compute logarithm exactly. A standard method is to use power series or rational function approximation to compute logarithm approximately. Although CRNs can realize these polynomial or rational function computations in a straightforward manner, the issue is that in order to be able to compute logarithm accurately over a large input range, it is necessary to use high-order approximation that results in CRNs with a large number of reactions. This article proposes a novel method to compute logarithm accurately in CRNs while keeping the number of reactions in CRNs low. The proposed method can create CRNs that can compute logarithm to different levels of accuracy by adjusting two design parameters. In this article, we present the chemical reactions required to realize the CRNs for computing logarithm. The key contribution of this article is a novel method to create CRNs that can compute logarithm accurately over a wide input range using only a small number of chemical reactions.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"2 1\",\"pages\":\"ysx002\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2017-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f9/42/ysx002.PMC7513738.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysx002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysx002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Chemical reaction networks for computing logarithm.
Living cells constantly process information from their living environment. It has recently been shown that a number of cell signaling mechanisms (e.g. G protein-coupled receptor and epidermal growth factor) can be interpreted as computing the logarithm of the ligand concentration. This suggests that logarithm is a fundamental computation primitive in cells. There is also an increasing interest in the synthetic biology community to implement analog computation and computing the logarithm is one such example. The aim of this article is to study how the computation of logarithm can be realized using chemical reaction networks (CRNs). CRNs cannot compute logarithm exactly. A standard method is to use power series or rational function approximation to compute logarithm approximately. Although CRNs can realize these polynomial or rational function computations in a straightforward manner, the issue is that in order to be able to compute logarithm accurately over a large input range, it is necessary to use high-order approximation that results in CRNs with a large number of reactions. This article proposes a novel method to compute logarithm accurately in CRNs while keeping the number of reactions in CRNs low. The proposed method can create CRNs that can compute logarithm to different levels of accuracy by adjusting two design parameters. In this article, we present the chemical reactions required to realize the CRNs for computing logarithm. The key contribution of this article is a novel method to create CRNs that can compute logarithm accurately over a wide input range using only a small number of chemical reactions.