Anastasia N. Vlasova, Gireesh Rajashekara, Linda J. Saif
{"title":"人类微生物组、饮食、肠道病毒和免疫系统之间的相互作用:来自非生猪研究的新见解","authors":"Anastasia N. Vlasova, Gireesh Rajashekara, Linda J. Saif","doi":"10.1016/j.ddmod.2019.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Studies over the past few decades demonstrated that gnotobiotic (Gn) pigs provide an unprecedented translational model to study human intestinal health and diseases. Due to the high degree of anatomical, physiological, metabolic, immunological, and developmental similarity, the domestic pig closely mimics the human intestinal microenvironment. Also, Gn piglets can be efficiently transplanted with human microbiota from infants, children and adults with resultant microbial profiles remarkably similar to the original human samples, a feat consistently not achievable in rodent models. Finally, Gn and human microbiota-associated (HMA) piglets are susceptible to human enteric viral pathogens (including human rotavirus, HRV) and can be fed authentic human diets, which further increases the translational potential of these models. In this review, we will focus on recent studies that evaluated the pathophysiology of protein malnutrition and the associated dysbiosis and immunological dysfunction in neonatal HMA piglets. Additionally, we will discuss studies of potential dietary interventions that moderate the effects of malnutrition and dysbiosis on antiviral immunity and HRV vaccines in HMA pigs. Such studies provide novel models and novel mechanistic insights critical for development of drug interventions.</p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.08.006","citationCount":"7","resultStr":"{\"title\":\"Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research\",\"authors\":\"Anastasia N. Vlasova, Gireesh Rajashekara, Linda J. Saif\",\"doi\":\"10.1016/j.ddmod.2019.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies over the past few decades demonstrated that gnotobiotic (Gn) pigs provide an unprecedented translational model to study human intestinal health and diseases. Due to the high degree of anatomical, physiological, metabolic, immunological, and developmental similarity, the domestic pig closely mimics the human intestinal microenvironment. Also, Gn piglets can be efficiently transplanted with human microbiota from infants, children and adults with resultant microbial profiles remarkably similar to the original human samples, a feat consistently not achievable in rodent models. Finally, Gn and human microbiota-associated (HMA) piglets are susceptible to human enteric viral pathogens (including human rotavirus, HRV) and can be fed authentic human diets, which further increases the translational potential of these models. In this review, we will focus on recent studies that evaluated the pathophysiology of protein malnutrition and the associated dysbiosis and immunological dysfunction in neonatal HMA piglets. Additionally, we will discuss studies of potential dietary interventions that moderate the effects of malnutrition and dysbiosis on antiviral immunity and HRV vaccines in HMA pigs. Such studies provide novel models and novel mechanistic insights critical for development of drug interventions.</p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.08.006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740675718300185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740675718300185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research
Studies over the past few decades demonstrated that gnotobiotic (Gn) pigs provide an unprecedented translational model to study human intestinal health and diseases. Due to the high degree of anatomical, physiological, metabolic, immunological, and developmental similarity, the domestic pig closely mimics the human intestinal microenvironment. Also, Gn piglets can be efficiently transplanted with human microbiota from infants, children and adults with resultant microbial profiles remarkably similar to the original human samples, a feat consistently not achievable in rodent models. Finally, Gn and human microbiota-associated (HMA) piglets are susceptible to human enteric viral pathogens (including human rotavirus, HRV) and can be fed authentic human diets, which further increases the translational potential of these models. In this review, we will focus on recent studies that evaluated the pathophysiology of protein malnutrition and the associated dysbiosis and immunological dysfunction in neonatal HMA piglets. Additionally, we will discuss studies of potential dietary interventions that moderate the effects of malnutrition and dysbiosis on antiviral immunity and HRV vaccines in HMA pigs. Such studies provide novel models and novel mechanistic insights critical for development of drug interventions.
期刊介绍:
Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.