{"title":"两亲性磁性聚乙烯醇靶向药物载体的制备及给药研究。","authors":"Yazhen Wang, Zhen Shi, Yu Sun, Xueying Wu, Shuang Li, Shaobo Dong, Tianyu Lan","doi":"10.1080/15685551.2020.1837442","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe<sub>3</sub>O<sub>4</sub>-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe<sub>3</sub>O<sub>4</sub> and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity of Fe<sub>3</sub>O<sub>4</sub>-PVA@SH on Aspirin and the drug release kinetics of loaded drugs were studied. The obtained Fe<sub>3</sub>O<sub>4</sub>-PVA@SH exhibits excellent drug release properties in simulating the human body fluid environment (pH 7.2). Since magnetically targeting drug carriers are readily available and have excellent biocompatibility and the characteristics of drug release. This work's development, preparing amphiphilic magnetically targeting drug carriers in drug delivery and other fields, has great significance.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"23 1","pages":"197-206"},"PeriodicalIF":1.8000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15685551.2020.1837442","citationCount":"7","resultStr":"{\"title\":\"Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research.\",\"authors\":\"Yazhen Wang, Zhen Shi, Yu Sun, Xueying Wu, Shuang Li, Shaobo Dong, Tianyu Lan\",\"doi\":\"10.1080/15685551.2020.1837442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe<sub>3</sub>O<sub>4</sub>-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe<sub>3</sub>O<sub>4</sub> and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity of Fe<sub>3</sub>O<sub>4</sub>-PVA@SH on Aspirin and the drug release kinetics of loaded drugs were studied. The obtained Fe<sub>3</sub>O<sub>4</sub>-PVA@SH exhibits excellent drug release properties in simulating the human body fluid environment (pH 7.2). Since magnetically targeting drug carriers are readily available and have excellent biocompatibility and the characteristics of drug release. This work's development, preparing amphiphilic magnetically targeting drug carriers in drug delivery and other fields, has great significance.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"23 1\",\"pages\":\"197-206\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15685551.2020.1837442\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2020.1837442\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2020.1837442","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research.
Currently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe3O4-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe3O4 and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity of Fe3O4-PVA@SH on Aspirin and the drug release kinetics of loaded drugs were studied. The obtained Fe3O4-PVA@SH exhibits excellent drug release properties in simulating the human body fluid environment (pH 7.2). Since magnetically targeting drug carriers are readily available and have excellent biocompatibility and the characteristics of drug release. This work's development, preparing amphiphilic magnetically targeting drug carriers in drug delivery and other fields, has great significance.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications