{"title":"穿孔素-1进化过程中的频繁出生和死亡事件。","authors":"Miguel Araujo-Voces, Víctor Quesada","doi":"10.1186/s12862-020-01698-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes.</p><p><strong>Results: </strong>We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs.</p><p><strong>Conclusions: </strong>The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.</p>","PeriodicalId":9111,"journal":{"name":"BMC Evolutionary Biology","volume":"20 1","pages":"135"},"PeriodicalIF":3.4000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574235/pdf/","citationCount":"0","resultStr":"{\"title\":\"Frequent birth-and-death events throughout perforin-1 evolution.\",\"authors\":\"Miguel Araujo-Voces, Víctor Quesada\",\"doi\":\"10.1186/s12862-020-01698-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes.</p><p><strong>Results: </strong>We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs.</p><p><strong>Conclusions: </strong>The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.</p>\",\"PeriodicalId\":9111,\"journal\":{\"name\":\"BMC Evolutionary Biology\",\"volume\":\"20 1\",\"pages\":\"135\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Evolutionary Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-020-01698-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-020-01698-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Frequent birth-and-death events throughout perforin-1 evolution.
Background: Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes.
Results: We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs.
Conclusions: The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.
期刊介绍:
BMC Evolutionary Biology is an open access, peer-reviewed journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.