{"title":"基于负乘法漂移的非精英进化算法的下界。","authors":"Benjamin Doerr","doi":"10.1162/evco_a_00283","DOIUrl":null,"url":null,"abstract":"<p><p>A decent number of lower bounds for non-elitist population-based evolutionary algorithms has been shown by now. Most of them are technically demanding due to the (hard to avoid) use of negative drift theorems-general results which translate an expected movement away from the target into a high hitting time. We propose a simple negative drift theorem for multiplicative drift scenarios and show that it can simplify existing analyses. We discuss in more detail Lehre's (2010) negative drift in populations method, one of the most general tools to prove lower bounds on the runtime of non-elitist mutation-based evolutionary algorithms for discrete search spaces. Together with other arguments, we obtain an alternative and simpler proof of this result, which also strengthens and simplifies this method. In particular, now only three of the five technical conditions of the previous result have to be verified. The lower bounds we obtain are explicit instead of only asymptotic. This allows us to compute concrete lower bounds for concrete algorithms, but also enables us to show that super-polynomial runtimes appear already when the reproduction rate is only a (1-ω(n-1/2)) factor below the threshold. For the special case of algorithms using standard bit mutation with a random mutation rate (called uniform mixing in the language of hyper-heuristics), we prove the result stated by Dang and Lehre (2016b) and extend it to mutation rates other than Θ(1/n), which includes the heavy-tailed mutation operator proposed by Doerr et al. (2017). We finally use our method and a novel domination argument to show an exponential lower bound for the runtime of the mutation-only simple genetic algorithm on OneMax for arbitrary population size.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"29 2","pages":"305-329"},"PeriodicalIF":4.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Lower Bounds for Non-Elitist Evolutionary Algorithms via Negative Multiplicative Drift.\",\"authors\":\"Benjamin Doerr\",\"doi\":\"10.1162/evco_a_00283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A decent number of lower bounds for non-elitist population-based evolutionary algorithms has been shown by now. Most of them are technically demanding due to the (hard to avoid) use of negative drift theorems-general results which translate an expected movement away from the target into a high hitting time. We propose a simple negative drift theorem for multiplicative drift scenarios and show that it can simplify existing analyses. We discuss in more detail Lehre's (2010) negative drift in populations method, one of the most general tools to prove lower bounds on the runtime of non-elitist mutation-based evolutionary algorithms for discrete search spaces. Together with other arguments, we obtain an alternative and simpler proof of this result, which also strengthens and simplifies this method. In particular, now only three of the five technical conditions of the previous result have to be verified. The lower bounds we obtain are explicit instead of only asymptotic. This allows us to compute concrete lower bounds for concrete algorithms, but also enables us to show that super-polynomial runtimes appear already when the reproduction rate is only a (1-ω(n-1/2)) factor below the threshold. For the special case of algorithms using standard bit mutation with a random mutation rate (called uniform mixing in the language of hyper-heuristics), we prove the result stated by Dang and Lehre (2016b) and extend it to mutation rates other than Θ(1/n), which includes the heavy-tailed mutation operator proposed by Doerr et al. (2017). We finally use our method and a novel domination argument to show an exponential lower bound for the runtime of the mutation-only simple genetic algorithm on OneMax for arbitrary population size.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"29 2\",\"pages\":\"305-329\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00283\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00283","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Lower Bounds for Non-Elitist Evolutionary Algorithms via Negative Multiplicative Drift.
A decent number of lower bounds for non-elitist population-based evolutionary algorithms has been shown by now. Most of them are technically demanding due to the (hard to avoid) use of negative drift theorems-general results which translate an expected movement away from the target into a high hitting time. We propose a simple negative drift theorem for multiplicative drift scenarios and show that it can simplify existing analyses. We discuss in more detail Lehre's (2010) negative drift in populations method, one of the most general tools to prove lower bounds on the runtime of non-elitist mutation-based evolutionary algorithms for discrete search spaces. Together with other arguments, we obtain an alternative and simpler proof of this result, which also strengthens and simplifies this method. In particular, now only three of the five technical conditions of the previous result have to be verified. The lower bounds we obtain are explicit instead of only asymptotic. This allows us to compute concrete lower bounds for concrete algorithms, but also enables us to show that super-polynomial runtimes appear already when the reproduction rate is only a (1-ω(n-1/2)) factor below the threshold. For the special case of algorithms using standard bit mutation with a random mutation rate (called uniform mixing in the language of hyper-heuristics), we prove the result stated by Dang and Lehre (2016b) and extend it to mutation rates other than Θ(1/n), which includes the heavy-tailed mutation operator proposed by Doerr et al. (2017). We finally use our method and a novel domination argument to show an exponential lower bound for the runtime of the mutation-only simple genetic algorithm on OneMax for arbitrary population size.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.