系统发育组B2在耐药尿路致病性大肠杆菌中表达显著的生物膜形成。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-12-01 DOI:10.1080/19932820.2020.1845444
Saima Javed, Zulfiqar Ali Mirani, Zaid Ahmed Pirzada
{"title":"系统发育组B2在耐药尿路致病性大肠杆菌中表达显著的生物膜形成。","authors":"Saima Javed, Zulfiqar Ali Mirani, Zaid Ahmed Pirzada","doi":"10.1080/19932820.2020.1845444","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilm is an important virulent marker attributed to the development of urinary tract infections (UTIs) by uropathogenic <i>E. coli</i> (UPEC). Drug-resistant and biofilm-producing UPEC are highly problematic causing catheter-associated or recurrent UTIs with significant morbidity and mortality. The aim of the current study was to investigate the prevalence of biofilm formation and phylogenetic groups in drug-resistant UPEC to predict their ability to cause disease. This prospective study was conducted at the Department of Microbiology, University of Karachi from January to June 2019. A total of 50 highly drug-resistant UPEC were selected for this study. UPEC isolates were screened to form biofilm by Congo-red agar (CRA) and microtiter plate (MTP) technique. The representative biofilm-producing isolates were analysed by scanning electron microscopy (SEM) monitoring. Phylogenetic analysis was done by PCR method based on two preserved genes; <i>chuA, yjaA</i> and TspE4-C2 DNA fragment. On CRA 34 (68%) UPEC were slime producers, while on MTP 20 (40%) were strong biofilm producers, 19 (38%) moderate and 11 (22%) were low to negligible biofilm producers. Molecular typing confirmed that phylogenetic group B2 was prevalent in drug resistant UPEC strains. Pathogenic strains belonged to phylogenetic group B2 and D were found to have greater biofilm forming ability as compare to non-pathogenic commensal strains that belonged to phylogenetic group A. Our results indicate that biofilm formation vary in drug resistant UPEC belonged to different phylogenetic groups. This study indicates possible link between in vitro biofilm formation and phylogenetic groups of UPEC, therefore this knowledge might be helpful to predict the pathogenic potential of UPEC and help design strategies for controlling UTIs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19932820.2020.1845444","citationCount":"14","resultStr":"{\"title\":\"Phylogenetic Group B2 Expressed Significant Biofilm Formation among Drug Resistant Uropathogenic Escherichia coli.\",\"authors\":\"Saima Javed, Zulfiqar Ali Mirani, Zaid Ahmed Pirzada\",\"doi\":\"10.1080/19932820.2020.1845444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilm is an important virulent marker attributed to the development of urinary tract infections (UTIs) by uropathogenic <i>E. coli</i> (UPEC). Drug-resistant and biofilm-producing UPEC are highly problematic causing catheter-associated or recurrent UTIs with significant morbidity and mortality. The aim of the current study was to investigate the prevalence of biofilm formation and phylogenetic groups in drug-resistant UPEC to predict their ability to cause disease. This prospective study was conducted at the Department of Microbiology, University of Karachi from January to June 2019. A total of 50 highly drug-resistant UPEC were selected for this study. UPEC isolates were screened to form biofilm by Congo-red agar (CRA) and microtiter plate (MTP) technique. The representative biofilm-producing isolates were analysed by scanning electron microscopy (SEM) monitoring. Phylogenetic analysis was done by PCR method based on two preserved genes; <i>chuA, yjaA</i> and TspE4-C2 DNA fragment. On CRA 34 (68%) UPEC were slime producers, while on MTP 20 (40%) were strong biofilm producers, 19 (38%) moderate and 11 (22%) were low to negligible biofilm producers. Molecular typing confirmed that phylogenetic group B2 was prevalent in drug resistant UPEC strains. Pathogenic strains belonged to phylogenetic group B2 and D were found to have greater biofilm forming ability as compare to non-pathogenic commensal strains that belonged to phylogenetic group A. Our results indicate that biofilm formation vary in drug resistant UPEC belonged to different phylogenetic groups. This study indicates possible link between in vitro biofilm formation and phylogenetic groups of UPEC, therefore this knowledge might be helpful to predict the pathogenic potential of UPEC and help design strategies for controlling UTIs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19932820.2020.1845444\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19932820.2020.1845444\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19932820.2020.1845444","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

生物膜是尿路致病性大肠杆菌(UPEC)引起尿路感染(uti)的重要毒力标志物。耐药和产生生物膜的UPEC是引起导管相关或复发性尿路感染的高度问题,具有显著的发病率和死亡率。本研究的目的是调查耐药UPEC中生物膜形成和系统发育群的流行情况,以预测其致病能力。这项前瞻性研究于2019年1月至6月在卡拉奇大学微生物学系进行。本研究共选择50株高耐药UPEC。采用刚果红琼脂(CRA)和微滴板(MTP)技术筛选UPEC分离株形成生物膜。采用扫描电镜(SEM)监测对具有代表性的产膜分离株进行了分析。采用PCR方法对两个保存基因进行系统发育分析;chuA, yjaA和TspE4-C2 DNA片段。在CRA 34(68%)上,UPEC是粘液生产者,而在MTP 20(40%)上是强生物膜生产者,19(38%)中等生物膜生产者和11(22%)低至可忽略的生物膜生产者。分子分型证实,UPEC耐药菌株普遍存在系统发育群B2。系统发生类群B2和D的致病性菌株比系统发生类群a的非致病性共生菌株具有更强的生物膜形成能力。我们的结果表明,不同系统发生类群的耐药UPEC的生物膜形成存在差异。本研究提示体外生物膜形成与UPEC的系统发育群之间可能存在联系,因此这一知识可能有助于预测UPEC的致病潜力,并有助于设计控制UTIs的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phylogenetic Group B2 Expressed Significant Biofilm Formation among Drug Resistant Uropathogenic Escherichia coli.

Biofilm is an important virulent marker attributed to the development of urinary tract infections (UTIs) by uropathogenic E. coli (UPEC). Drug-resistant and biofilm-producing UPEC are highly problematic causing catheter-associated or recurrent UTIs with significant morbidity and mortality. The aim of the current study was to investigate the prevalence of biofilm formation and phylogenetic groups in drug-resistant UPEC to predict their ability to cause disease. This prospective study was conducted at the Department of Microbiology, University of Karachi from January to June 2019. A total of 50 highly drug-resistant UPEC were selected for this study. UPEC isolates were screened to form biofilm by Congo-red agar (CRA) and microtiter plate (MTP) technique. The representative biofilm-producing isolates were analysed by scanning electron microscopy (SEM) monitoring. Phylogenetic analysis was done by PCR method based on two preserved genes; chuA, yjaA and TspE4-C2 DNA fragment. On CRA 34 (68%) UPEC were slime producers, while on MTP 20 (40%) were strong biofilm producers, 19 (38%) moderate and 11 (22%) were low to negligible biofilm producers. Molecular typing confirmed that phylogenetic group B2 was prevalent in drug resistant UPEC strains. Pathogenic strains belonged to phylogenetic group B2 and D were found to have greater biofilm forming ability as compare to non-pathogenic commensal strains that belonged to phylogenetic group A. Our results indicate that biofilm formation vary in drug resistant UPEC belonged to different phylogenetic groups. This study indicates possible link between in vitro biofilm formation and phylogenetic groups of UPEC, therefore this knowledge might be helpful to predict the pathogenic potential of UPEC and help design strategies for controlling UTIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1