细胞器靶型大肠杆菌磷脂酰丝氨酸合成酶PssA揭示了磷脂酰丝氨酸进入线粒体的通量。

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Journal Pub Date : 2021-05-01 Epub Date: 2020-12-30 DOI:10.1111/febs.15657
Hiroya Shiino, Shiina Furuta, Rieko Kojima, Keisuke Kimura, Toshiya Endo, Yasushi Tamura
{"title":"细胞器靶型大肠杆菌磷脂酰丝氨酸合成酶PssA揭示了磷脂酰丝氨酸进入线粒体的通量。","authors":"Hiroya Shiino,&nbsp;Shiina Furuta,&nbsp;Rieko Kojima,&nbsp;Keisuke Kimura,&nbsp;Toshiya Endo,&nbsp;Yasushi Tamura","doi":"10.1111/febs.15657","DOIUrl":null,"url":null,"abstract":"<p><p>Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 10","pages":"3285-3299"},"PeriodicalIF":5.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15657","citationCount":"3","resultStr":"{\"title\":\"Phosphatidylserine flux into mitochondria unveiled by organelle-targeted Escherichia coli phosphatidylserine synthase PssA.\",\"authors\":\"Hiroya Shiino,&nbsp;Shiina Furuta,&nbsp;Rieko Kojima,&nbsp;Keisuke Kimura,&nbsp;Toshiya Endo,&nbsp;Yasushi Tamura\",\"doi\":\"10.1111/febs.15657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.</p>\",\"PeriodicalId\":12261,\"journal\":{\"name\":\"FEBS Journal\",\"volume\":\"288 10\",\"pages\":\"3285-3299\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/febs.15657\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.15657\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15657","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

大多数磷脂在内质网合成并分布到其他细胞膜上。尽管囊泡运输有助于磷脂在线粒体膜系统中的分布,但磷脂究竟是如何在线粒体膜之间运输的尚不清楚。为了深入了解磷脂进入线粒体的运输途径,我们在缺乏单一PS合成酶(Cho1)的酵母细胞中,在具有不同膜拓扑的不同膜室中表达了大肠杆菌磷脂酰丝氨酸(PS)合成酶PssA。有趣的是,当靶向内质网(ER)、过氧化物酶体或脂滴膜时,PssA可以补充Cho1的缺失。合成的PS可以通过线粒体PS脱羧酶Psd1转化为磷脂酰乙醇胺(PE),这表明在过氧化物酶体中合成的磷脂和低剂量(ld)可以有效地到达线粒体。此外,我们发现从基质侧整合到线粒体内膜(MIM)的PssA可以部分补充Cho1的损失。在MIM中合成的PS也转化为PE,表明PS通过MIM成为PE。这些发现扩大了我们对细胞内磷脂通过线粒体运输途径的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphatidylserine flux into mitochondria unveiled by organelle-targeted Escherichia coli phosphatidylserine synthase PssA.

Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
期刊最新文献
Autophagy and tumorigenesis. Migrasome biogenesis and functions. Nuclear speckles: dynamic hubs of gene expression regulation. Molecular mechanisms and biological roles of GOMED. Autophagy in the retinal pigment epithelium: a new vision and future challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1