COVID-19传染与数字金融。

Digital finance Pub Date : 2020-01-01 Epub Date: 2020-05-11 DOI:10.1007/s42521-020-00021-3
Arianna Agosto, Paolo Giudici
{"title":"COVID-19传染与数字金融。","authors":"Arianna Agosto,&nbsp;Paolo Giudici","doi":"10.1007/s42521-020-00021-3","DOIUrl":null,"url":null,"abstract":"<p><p>Digital finance is going to be heavily affected by the COVID-19 outbreak. We present a statistical model which can be employed to understand the contagion dynamics of the COVID-19, so that its impact on finance can possibly be anticipated, and digitally monitored. The model is a Poisson autoregression of the daily new observed cases, and considers both short-term and long-term dependence in the infections counts. Model results are presented for the observed time series of China, the first affected country, but can be easily reproduced for all countries.</p>","PeriodicalId":72817,"journal":{"name":"Digital finance","volume":"2 1-2","pages":"159-167"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42521-020-00021-3","citationCount":"1","resultStr":"{\"title\":\"COVID-19 contagion and digital finance.\",\"authors\":\"Arianna Agosto,&nbsp;Paolo Giudici\",\"doi\":\"10.1007/s42521-020-00021-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital finance is going to be heavily affected by the COVID-19 outbreak. We present a statistical model which can be employed to understand the contagion dynamics of the COVID-19, so that its impact on finance can possibly be anticipated, and digitally monitored. The model is a Poisson autoregression of the daily new observed cases, and considers both short-term and long-term dependence in the infections counts. Model results are presented for the observed time series of China, the first affected country, but can be easily reproduced for all countries.</p>\",\"PeriodicalId\":72817,\"journal\":{\"name\":\"Digital finance\",\"volume\":\"2 1-2\",\"pages\":\"159-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s42521-020-00021-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42521-020-00021-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42521-020-00021-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字金融将受到新冠肺炎疫情的严重影响。我们提出了一个统计模型,可用于了解COVID-19的传染动态,从而有可能预测其对金融的影响,并进行数字化监测。该模型是每日新观察病例的泊松自回归,并考虑了感染计数的短期和长期依赖性。模型结果是针对第一个受影响的国家中国的观测时间序列给出的,但可以很容易地复制到所有国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 contagion and digital finance.

Digital finance is going to be heavily affected by the COVID-19 outbreak. We present a statistical model which can be employed to understand the contagion dynamics of the COVID-19, so that its impact on finance can possibly be anticipated, and digitally monitored. The model is a Poisson autoregression of the daily new observed cases, and considers both short-term and long-term dependence in the infections counts. Model results are presented for the observed time series of China, the first affected country, but can be easily reproduced for all countries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding temporal dynamics of jumps in cryptocurrency markets: evidence from tick-by-tick data Improving credit risk assessment in P2P lending with explainable machine learning survival analysis Deep learning for quadratic hedging in incomplete jump market Fintech: finance, technologies, and the society Clustering Uniswap v3 traders from their activity on multiple liquidity pools, via novel graph embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1