{"title":"基于网络药理学的麻黄苦杏仁防治2019年科罗纳病毒病(COVID-19)的有效成分及作用机制探索","authors":"Kai Gao, Yan-Ping Song, Anna Song","doi":"10.1186/s13040-020-00229-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>COVID-19 has caused a global pandemic, and there is no wonder drug for epidemic control at present. However, many clinical practices have shown that traditional Chinese medicine has played an important role in treating the outbreak. Among them, ephedra-bitter almond is a common couplet medicine in anti-COVID-19 prescriptions. This study aims to conduct an exploration of key components and mechanisms of ephedra-bitter almond anti-COVID-19 based on network pharmacology.</p><p><strong>Material and methods: </strong>We collected and screened potential active components of ephedra-bitter almond based on the TCMSP Database, and we predicted targets of the components. Meanwhile, we collected relevant targets of COVID-19 through the GeneCards and CTD databases. Then, the potential targets of ephedra-bitter almond against COVID-19 were screened out. The key components, targets, biological processes, and pathways of ephedra-bitter almond anti-COVID-19 were predicted by constructing the relationship network of herb-component-target (H-C-T), protein-protein interaction (PPI), and functional enrichment. Finally, the key components and targets were docked by AutoDock Vina to explore their binding mode.</p><p><strong>Results: </strong>Ephedra-bitter almond played an overall regulatory role in anti-COVID-19 via the patterns of multi-component-target-pathway. In addition, some key components of ephedra-bitter almond, such as β-sitosterol, estrone, and stigmasterol, had high binding activity to 3CL and ACE2 by molecular docking simulation, which provided new molecular structures for new drug development of COVID-19.</p><p><strong>Conclusion: </strong>Ephedra-bitter almonds were used to prevent and treat COVID-19 through directly inhibiting the virus, regulating immune responses, and promoting body repair. However, this work is a prospective study based on data mining, and the findings need to be interpreted with caution.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"13 1","pages":"19"},"PeriodicalIF":4.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology.\",\"authors\":\"Kai Gao, Yan-Ping Song, Anna Song\",\"doi\":\"10.1186/s13040-020-00229-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>COVID-19 has caused a global pandemic, and there is no wonder drug for epidemic control at present. However, many clinical practices have shown that traditional Chinese medicine has played an important role in treating the outbreak. Among them, ephedra-bitter almond is a common couplet medicine in anti-COVID-19 prescriptions. This study aims to conduct an exploration of key components and mechanisms of ephedra-bitter almond anti-COVID-19 based on network pharmacology.</p><p><strong>Material and methods: </strong>We collected and screened potential active components of ephedra-bitter almond based on the TCMSP Database, and we predicted targets of the components. Meanwhile, we collected relevant targets of COVID-19 through the GeneCards and CTD databases. Then, the potential targets of ephedra-bitter almond against COVID-19 were screened out. The key components, targets, biological processes, and pathways of ephedra-bitter almond anti-COVID-19 were predicted by constructing the relationship network of herb-component-target (H-C-T), protein-protein interaction (PPI), and functional enrichment. Finally, the key components and targets were docked by AutoDock Vina to explore their binding mode.</p><p><strong>Results: </strong>Ephedra-bitter almond played an overall regulatory role in anti-COVID-19 via the patterns of multi-component-target-pathway. In addition, some key components of ephedra-bitter almond, such as β-sitosterol, estrone, and stigmasterol, had high binding activity to 3CL and ACE2 by molecular docking simulation, which provided new molecular structures for new drug development of COVID-19.</p><p><strong>Conclusion: </strong>Ephedra-bitter almonds were used to prevent and treat COVID-19 through directly inhibiting the virus, regulating immune responses, and promoting body repair. However, this work is a prospective study based on data mining, and the findings need to be interpreted with caution.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"13 1\",\"pages\":\"19\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-020-00229-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-020-00229-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology.
Background: COVID-19 has caused a global pandemic, and there is no wonder drug for epidemic control at present. However, many clinical practices have shown that traditional Chinese medicine has played an important role in treating the outbreak. Among them, ephedra-bitter almond is a common couplet medicine in anti-COVID-19 prescriptions. This study aims to conduct an exploration of key components and mechanisms of ephedra-bitter almond anti-COVID-19 based on network pharmacology.
Material and methods: We collected and screened potential active components of ephedra-bitter almond based on the TCMSP Database, and we predicted targets of the components. Meanwhile, we collected relevant targets of COVID-19 through the GeneCards and CTD databases. Then, the potential targets of ephedra-bitter almond against COVID-19 were screened out. The key components, targets, biological processes, and pathways of ephedra-bitter almond anti-COVID-19 were predicted by constructing the relationship network of herb-component-target (H-C-T), protein-protein interaction (PPI), and functional enrichment. Finally, the key components and targets were docked by AutoDock Vina to explore their binding mode.
Results: Ephedra-bitter almond played an overall regulatory role in anti-COVID-19 via the patterns of multi-component-target-pathway. In addition, some key components of ephedra-bitter almond, such as β-sitosterol, estrone, and stigmasterol, had high binding activity to 3CL and ACE2 by molecular docking simulation, which provided new molecular structures for new drug development of COVID-19.
Conclusion: Ephedra-bitter almonds were used to prevent and treat COVID-19 through directly inhibiting the virus, regulating immune responses, and promoting body repair. However, this work is a prospective study based on data mining, and the findings need to be interpreted with caution.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.