{"title":"人工接种荧光假单胞菌对鲜切马铃薯酶促褐变反应的影响。","authors":"Ayano Inoue, Hidemi Izumi","doi":"10.4265/bio.25.215","DOIUrl":null,"url":null,"abstract":"<p><p>We initially correlated fluorescent pseudomonads and severity of enzymatic browning on fresh-cut potatoes. Subsequently, we determined the influence of inoculation with Pseudomonas fluorescens following its isolation from the brown tissues on the browning response on fresh-cut potatoes. Bacterial counts on potato slices were higher on browning tissues than on non-browning tissues. P. fluorescens that has been isolated only from the severely browning tissues developed brown discoloration on surface tissues when inoculated onto potato slices. When potato slices were initially inoculated with 10<sup>3</sup> colony-forming unit (CFU) per mL of P. fluorescens and then stored at 5ºC, bacterial counts, polyphenol oxidase (PPO) activity, phenolic content, and browning severity increased after 3 days of storage. We observed plant PPO derived from potatoes and bacterial PPO released by P. fluorescens and dictated that the plant PPO contributed to browning reactions because only the plant PPO was activated at pH 6-7 that lies in potato tissues. The PPO1 gene that contributed to browning on potatoes was expressed prominently in potato tissues following inoculation with P. fluorescens. These results indicated that P. fluorescens enhanced browning of fresh-cut potatoes by inducing the plant PPO gene, plant PPO activity, and accumulation of phenolics as a biocontrol agent.</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of Artificial Inoculation with Pseudomonas fluorescens on Enzymatic Browning Reactions of Fresh-cut Potatoes.\",\"authors\":\"Ayano Inoue, Hidemi Izumi\",\"doi\":\"10.4265/bio.25.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We initially correlated fluorescent pseudomonads and severity of enzymatic browning on fresh-cut potatoes. Subsequently, we determined the influence of inoculation with Pseudomonas fluorescens following its isolation from the brown tissues on the browning response on fresh-cut potatoes. Bacterial counts on potato slices were higher on browning tissues than on non-browning tissues. P. fluorescens that has been isolated only from the severely browning tissues developed brown discoloration on surface tissues when inoculated onto potato slices. When potato slices were initially inoculated with 10<sup>3</sup> colony-forming unit (CFU) per mL of P. fluorescens and then stored at 5ºC, bacterial counts, polyphenol oxidase (PPO) activity, phenolic content, and browning severity increased after 3 days of storage. We observed plant PPO derived from potatoes and bacterial PPO released by P. fluorescens and dictated that the plant PPO contributed to browning reactions because only the plant PPO was activated at pH 6-7 that lies in potato tissues. The PPO1 gene that contributed to browning on potatoes was expressed prominently in potato tissues following inoculation with P. fluorescens. These results indicated that P. fluorescens enhanced browning of fresh-cut potatoes by inducing the plant PPO gene, plant PPO activity, and accumulation of phenolics as a biocontrol agent.</p>\",\"PeriodicalId\":8777,\"journal\":{\"name\":\"Biocontrol science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4265/bio.25.215\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.25.215","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Influence of Artificial Inoculation with Pseudomonas fluorescens on Enzymatic Browning Reactions of Fresh-cut Potatoes.
We initially correlated fluorescent pseudomonads and severity of enzymatic browning on fresh-cut potatoes. Subsequently, we determined the influence of inoculation with Pseudomonas fluorescens following its isolation from the brown tissues on the browning response on fresh-cut potatoes. Bacterial counts on potato slices were higher on browning tissues than on non-browning tissues. P. fluorescens that has been isolated only from the severely browning tissues developed brown discoloration on surface tissues when inoculated onto potato slices. When potato slices were initially inoculated with 103 colony-forming unit (CFU) per mL of P. fluorescens and then stored at 5ºC, bacterial counts, polyphenol oxidase (PPO) activity, phenolic content, and browning severity increased after 3 days of storage. We observed plant PPO derived from potatoes and bacterial PPO released by P. fluorescens and dictated that the plant PPO contributed to browning reactions because only the plant PPO was activated at pH 6-7 that lies in potato tissues. The PPO1 gene that contributed to browning on potatoes was expressed prominently in potato tissues following inoculation with P. fluorescens. These results indicated that P. fluorescens enhanced browning of fresh-cut potatoes by inducing the plant PPO gene, plant PPO activity, and accumulation of phenolics as a biocontrol agent.
期刊介绍:
The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.