Nafiseh Naderi, Raquel Farias, Mira Abou Rjeili, Seyed-Mohammad-Yousof Mostafavi-Pour-Manshadi, Suurya Krishnan, Pei Zhi Li, Carolyn J Baglole, Jean Bourbeau
{"title":"探讨阿奇霉素预处理对暴露于香烟烟雾支气管上皮细胞炎症介质的影响。","authors":"Nafiseh Naderi, Raquel Farias, Mira Abou Rjeili, Seyed-Mohammad-Yousof Mostafavi-Pour-Manshadi, Suurya Krishnan, Pei Zhi Li, Carolyn J Baglole, Jean Bourbeau","doi":"10.1080/01902148.2020.1857470","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose of the study:</b> Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. <b>Materials and methods:</b> BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. <b>Results:</b> There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. <b>Conclusion:</b> Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"47 2","pages":"98-109"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01902148.2020.1857470","citationCount":"2","resultStr":"{\"title\":\"Investigating the effect of pretreatment with azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.\",\"authors\":\"Nafiseh Naderi, Raquel Farias, Mira Abou Rjeili, Seyed-Mohammad-Yousof Mostafavi-Pour-Manshadi, Suurya Krishnan, Pei Zhi Li, Carolyn J Baglole, Jean Bourbeau\",\"doi\":\"10.1080/01902148.2020.1857470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose of the study:</b> Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. <b>Materials and methods:</b> BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. <b>Results:</b> There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. <b>Conclusion:</b> Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"47 2\",\"pages\":\"98-109\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01902148.2020.1857470\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2020.1857470\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2020.1857470","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Investigating the effect of pretreatment with azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.
Purpose of the study: Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. Materials and methods: BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results: There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. Conclusion: Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.