含有除草剂(氧氟草醚)的聚脲微胶囊的设计与应用。

IF 1.8 4区 化学 Q3 POLYMER SCIENCE Designed Monomers and Polymers Pub Date : 2020-09-08 DOI:10.1080/15685551.2020.1816344
Jayprakash Rao, Amar Nath Chandrani, Anil Powar, Sudeshna Chandra
{"title":"含有除草剂(氧氟草醚)的聚脲微胶囊的设计与应用。","authors":"Jayprakash Rao, Amar Nath Chandrani, Anil Powar, Sudeshna Chandra","doi":"10.1080/15685551.2020.1816344","DOIUrl":null,"url":null,"abstract":"<p><p>Polyurea, a controlled release material, has been widely applied in agricultural fields due to high thermal stability and low cost. In this article oxyfluorfen polyurea microcapsules suspension was successfully prepared by interfacial polymerization using diisocyanate and polyamines such as Ethylenediamine, Hexamethylenediamine, Diethylenetriamine in presence of green solvent, i.e., N,N-dimethyldecanamide. The microcapsule suspension of oxyfluorfen has not been researched yet by using solvent N,N-dimethyldecanamide and polyamines. The effect and the type of diamines on the morphology and properties of the microcapsules have been investigated. The synthesized microcapsules were characterized by scanning electron microscope, ultraviolet spectrometry, Fourier transform iInfrared spectrometer, thermogravimetric analysis and particle size analyser. The effect of the core to shell ratio on encapsulation efficiency and release kinetics were also studied. The oxyfluorfen microcapsules had an excellent encapsulation efficiency (98.2%) using EDA as the monomer and Release kinetics depended upon the type of monomers used and also on core to shell ratio used (6.5:1, 5:1, 4:1). As core to shell ratio was increased the encapsulation efficiency was found to decrease. Prepared Microcapsules when sprayed on paddy crop was found to be safe in comparison with Emulsifiable concentrate sample.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"23 1","pages":"155-163"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738284/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and application of polyurea microcapsules containing herbicide (oxyfluorfen).\",\"authors\":\"Jayprakash Rao, Amar Nath Chandrani, Anil Powar, Sudeshna Chandra\",\"doi\":\"10.1080/15685551.2020.1816344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyurea, a controlled release material, has been widely applied in agricultural fields due to high thermal stability and low cost. In this article oxyfluorfen polyurea microcapsules suspension was successfully prepared by interfacial polymerization using diisocyanate and polyamines such as Ethylenediamine, Hexamethylenediamine, Diethylenetriamine in presence of green solvent, i.e., N,N-dimethyldecanamide. The microcapsule suspension of oxyfluorfen has not been researched yet by using solvent N,N-dimethyldecanamide and polyamines. The effect and the type of diamines on the morphology and properties of the microcapsules have been investigated. The synthesized microcapsules were characterized by scanning electron microscope, ultraviolet spectrometry, Fourier transform iInfrared spectrometer, thermogravimetric analysis and particle size analyser. The effect of the core to shell ratio on encapsulation efficiency and release kinetics were also studied. The oxyfluorfen microcapsules had an excellent encapsulation efficiency (98.2%) using EDA as the monomer and Release kinetics depended upon the type of monomers used and also on core to shell ratio used (6.5:1, 5:1, 4:1). As core to shell ratio was increased the encapsulation efficiency was found to decrease. Prepared Microcapsules when sprayed on paddy crop was found to be safe in comparison with Emulsifiable concentrate sample.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"23 1\",\"pages\":\"155-163\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2020.1816344\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2020.1816344","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚脲是一种控释材料,因其热稳定性高、成本低而被广泛应用于农业领域。本文利用二异氰酸酯和多胺(如乙二胺、六亚甲基二胺、二乙烯三胺)在绿色溶剂(即 N,N-二甲基癸酰胺)存在下进行界面聚合,成功制备了氧氟草酯聚脲微胶囊悬浮液。目前还没有使用 N,N-二甲基癸酰胺和多胺来研究氧氟草醚的微胶囊悬浮剂。我们研究了二元胺的类型对微胶囊形态和性能的影响。通过扫描电子显微镜、紫外光谱仪、傅立叶变换红外光谱仪、热重分析和粒度分析仪对合成的微胶囊进行了表征。此外,还研究了芯壳比对封装效率和释放动力学的影响。以 EDA 为单体的氧氟草醚微胶囊具有极佳的封装效率(98.2%),释放动力学取决于所用单体的类型以及芯壳比(6.5:1、5:1、4:1)。随着芯壳比的增加,封装效率会降低。与乳油样品相比,制备的微胶囊喷洒在水稻作物上是安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and application of polyurea microcapsules containing herbicide (oxyfluorfen).

Polyurea, a controlled release material, has been widely applied in agricultural fields due to high thermal stability and low cost. In this article oxyfluorfen polyurea microcapsules suspension was successfully prepared by interfacial polymerization using diisocyanate and polyamines such as Ethylenediamine, Hexamethylenediamine, Diethylenetriamine in presence of green solvent, i.e., N,N-dimethyldecanamide. The microcapsule suspension of oxyfluorfen has not been researched yet by using solvent N,N-dimethyldecanamide and polyamines. The effect and the type of diamines on the morphology and properties of the microcapsules have been investigated. The synthesized microcapsules were characterized by scanning electron microscope, ultraviolet spectrometry, Fourier transform iInfrared spectrometer, thermogravimetric analysis and particle size analyser. The effect of the core to shell ratio on encapsulation efficiency and release kinetics were also studied. The oxyfluorfen microcapsules had an excellent encapsulation efficiency (98.2%) using EDA as the monomer and Release kinetics depended upon the type of monomers used and also on core to shell ratio used (6.5:1, 5:1, 4:1). As core to shell ratio was increased the encapsulation efficiency was found to decrease. Prepared Microcapsules when sprayed on paddy crop was found to be safe in comparison with Emulsifiable concentrate sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
期刊最新文献
Synthesis and properties of bio-based semi-aromatic heat-resistant copolymer polyamide 5T-co-6T. Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters. The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg+2 sensor. Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1