性别影响老年小鼠的心功能和对甲状腺激素的蛋白质组反应。

IF 2.1 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Proteome Science Pub Date : 2020-12-07 DOI:10.1186/s12953-020-00167-3
Wei Zhong Zhu, Aaron Olson, Michael Portman, Dolena Ledee
{"title":"性别影响老年小鼠的心功能和对甲状腺激素的蛋白质组反应。","authors":"Wei Zhong Zhu,&nbsp;Aaron Olson,&nbsp;Michael Portman,&nbsp;Dolena Ledee","doi":"10.1186/s12953-020-00167-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sex and age have substantial influence on thyroid function. Sex influences the risk and clinical expression of thyroid disorders (TDs), with age a proposed trigger for the development of TDs. Cardiac function is affected by thyroid hormone levels with gender differences. Accordingly, we investigated the proteomic changes involved in sex based cardiac responses to thyroid dysfunction in elderly mice.</p><p><strong>Methods: </strong>Aged (18-20 months) male and female C57BL/6 mice were fed diets to create euthyroid, hypothyroid, or hyperthyroid states. Serial echocardiographs were performed to assess heart function. Proteomic changes in cardiac protein profiles were assessed by 2-D DIGE and LC-MS/MS, and a subset confirmed by immunoblotting.</p><p><strong>Results: </strong>Serial echocardiographs showed ventricular function remained unchanged regardless of treatment. Heart rate and size increased (hyperthyroid) or decreased (hypothyroid) independent of sex. Pairwise comparison between the six groups identified 55 proteins (≥ 1.5-fold difference and p < 0.1). Compared to same-sex controls 26/55 protein changes were in the female hypothyroid heart, whereas 15/55 protein changes were identified in the male hypothyroid, and male and female hyperthyroid heart. The proteins mapped to oxidative phosphorylation, tissue remodeling and inflammatory response pathways.</p><p><strong>Conclusion: </strong>We identified both predicted and novel proteins with gender specific differential expression in response to thyroid hormone status, providing a catalogue of proteins associated with thyroid dysfunction. Pursuit of these proteins and their involvement in cardiac function will expand our understanding of mechanisms involved in sex-based cardiac response to thyroid dysfunction.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"18 1","pages":"11"},"PeriodicalIF":2.1000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12953-020-00167-3","citationCount":"2","resultStr":"{\"title\":\"Sex impacts cardiac function and the proteome response to thyroid hormone in aged mice.\",\"authors\":\"Wei Zhong Zhu,&nbsp;Aaron Olson,&nbsp;Michael Portman,&nbsp;Dolena Ledee\",\"doi\":\"10.1186/s12953-020-00167-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sex and age have substantial influence on thyroid function. Sex influences the risk and clinical expression of thyroid disorders (TDs), with age a proposed trigger for the development of TDs. Cardiac function is affected by thyroid hormone levels with gender differences. Accordingly, we investigated the proteomic changes involved in sex based cardiac responses to thyroid dysfunction in elderly mice.</p><p><strong>Methods: </strong>Aged (18-20 months) male and female C57BL/6 mice were fed diets to create euthyroid, hypothyroid, or hyperthyroid states. Serial echocardiographs were performed to assess heart function. Proteomic changes in cardiac protein profiles were assessed by 2-D DIGE and LC-MS/MS, and a subset confirmed by immunoblotting.</p><p><strong>Results: </strong>Serial echocardiographs showed ventricular function remained unchanged regardless of treatment. Heart rate and size increased (hyperthyroid) or decreased (hypothyroid) independent of sex. Pairwise comparison between the six groups identified 55 proteins (≥ 1.5-fold difference and p < 0.1). Compared to same-sex controls 26/55 protein changes were in the female hypothyroid heart, whereas 15/55 protein changes were identified in the male hypothyroid, and male and female hyperthyroid heart. The proteins mapped to oxidative phosphorylation, tissue remodeling and inflammatory response pathways.</p><p><strong>Conclusion: </strong>We identified both predicted and novel proteins with gender specific differential expression in response to thyroid hormone status, providing a catalogue of proteins associated with thyroid dysfunction. Pursuit of these proteins and their involvement in cardiac function will expand our understanding of mechanisms involved in sex-based cardiac response to thyroid dysfunction.</p>\",\"PeriodicalId\":20857,\"journal\":{\"name\":\"Proteome Science\",\"volume\":\"18 1\",\"pages\":\"11\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12953-020-00167-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteome Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12953-020-00167-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-020-00167-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 2

摘要

背景:性别和年龄对甲状腺功能有重要影响。性别影响甲状腺疾病(TDs)的风险和临床表现,年龄被认为是TDs发展的触发因素。甲状腺激素水平对心功能的影响存在性别差异。因此,我们研究了老年小鼠甲状腺功能障碍时基于性别的心脏反应的蛋白质组学变化。方法:老龄(18-20月龄)雄性和雌性C57BL/6小鼠分别饲喂甲状腺功能正常、甲状腺功能低下和甲状腺功能亢进状态的日粮。连续超声心动图评估心功能。通过二维DIGE和LC-MS/MS评估心脏蛋白谱的蛋白质组学变化,并通过免疫印迹确认一个亚群。结果:连续超声心动图显示心室功能保持不变,无论治疗。心率和大小增加(甲状腺功能亢进)或减少(甲状腺功能减退)与性别无关。6组之间的两两比较鉴定出55个蛋白(差异≥1.5倍和p)。结论:我们鉴定出预测的和新的蛋白在甲状腺激素状态下具有性别特异性差异表达,提供了与甲状腺功能障碍相关的蛋白目录。对这些蛋白及其在心功能中的作用的研究将扩大我们对甲状腺功能障碍中基于性别的心脏反应机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sex impacts cardiac function and the proteome response to thyroid hormone in aged mice.

Background: Sex and age have substantial influence on thyroid function. Sex influences the risk and clinical expression of thyroid disorders (TDs), with age a proposed trigger for the development of TDs. Cardiac function is affected by thyroid hormone levels with gender differences. Accordingly, we investigated the proteomic changes involved in sex based cardiac responses to thyroid dysfunction in elderly mice.

Methods: Aged (18-20 months) male and female C57BL/6 mice were fed diets to create euthyroid, hypothyroid, or hyperthyroid states. Serial echocardiographs were performed to assess heart function. Proteomic changes in cardiac protein profiles were assessed by 2-D DIGE and LC-MS/MS, and a subset confirmed by immunoblotting.

Results: Serial echocardiographs showed ventricular function remained unchanged regardless of treatment. Heart rate and size increased (hyperthyroid) or decreased (hypothyroid) independent of sex. Pairwise comparison between the six groups identified 55 proteins (≥ 1.5-fold difference and p < 0.1). Compared to same-sex controls 26/55 protein changes were in the female hypothyroid heart, whereas 15/55 protein changes were identified in the male hypothyroid, and male and female hyperthyroid heart. The proteins mapped to oxidative phosphorylation, tissue remodeling and inflammatory response pathways.

Conclusion: We identified both predicted and novel proteins with gender specific differential expression in response to thyroid hormone status, providing a catalogue of proteins associated with thyroid dysfunction. Pursuit of these proteins and their involvement in cardiac function will expand our understanding of mechanisms involved in sex-based cardiac response to thyroid dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteome Science
Proteome Science 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
17
审稿时长
4.5 months
期刊介绍: Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context. Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics. In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.
期刊最新文献
Metabolism-related proteins as biomarkers for predicting prognosis in polycystic ovary syndrome. LC-MS-based quantitation of proteomic changes induced by Norcantharidin in MTB-Treated macrophages. Identification of mRNA biomarkers in extremely early hypertensive intracerebral hemorrhage (HICH). Multi-targeted olink proteomics analyses of cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage. Genome-wide computational analysis of the dirigent gene family in Solanum lycopersicum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1