Brandon J. Bongers, Adriaan. P. IJzerman, Gerard J.P. Van Westen
{"title":"蛋白质化学计量学 - 生物活性和选择性建模的最新进展","authors":"Brandon J. Bongers, Adriaan. P. IJzerman, Gerard J.P. Van Westen","doi":"10.1016/j.ddtec.2020.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Proteochemometrics is a machine learning based modeling approach relying on a combination of ligand and protein descriptors. With ongoing developments in machine learning and increases in public data the technique is more frequently applied in early drug discovery, typically in ligand–target binding prediction. Common applications include improvements to single target quantitative structure-activity relationship models, protein selectivity and promiscuity modeling, and large-scale deep learning approaches. The increase in predictive power using proteochemometrics is observed in multi-target bioactivity modeling, opening the door to more extensive studies covering whole protein families. On top of that, with deep learning fueling more complex and larger scale models, proteochemometrics allows faster and higher quality computational models supporting the design, make, test cycle.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 89-98"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.08.003","citationCount":"24","resultStr":"{\"title\":\"Proteochemometrics – recent developments in bioactivity and selectivity modeling\",\"authors\":\"Brandon J. Bongers, Adriaan. P. IJzerman, Gerard J.P. Van Westen\",\"doi\":\"10.1016/j.ddtec.2020.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proteochemometrics is a machine learning based modeling approach relying on a combination of ligand and protein descriptors. With ongoing developments in machine learning and increases in public data the technique is more frequently applied in early drug discovery, typically in ligand–target binding prediction. Common applications include improvements to single target quantitative structure-activity relationship models, protein selectivity and promiscuity modeling, and large-scale deep learning approaches. The increase in predictive power using proteochemometrics is observed in multi-target bioactivity modeling, opening the door to more extensive studies covering whole protein families. On top of that, with deep learning fueling more complex and larger scale models, proteochemometrics allows faster and higher quality computational models supporting the design, make, test cycle.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"32 \",\"pages\":\"Pages 89-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.08.003\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674920300111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Proteochemometrics – recent developments in bioactivity and selectivity modeling
Proteochemometrics is a machine learning based modeling approach relying on a combination of ligand and protein descriptors. With ongoing developments in machine learning and increases in public data the technique is more frequently applied in early drug discovery, typically in ligand–target binding prediction. Common applications include improvements to single target quantitative structure-activity relationship models, protein selectivity and promiscuity modeling, and large-scale deep learning approaches. The increase in predictive power using proteochemometrics is observed in multi-target bioactivity modeling, opening the door to more extensive studies covering whole protein families. On top of that, with deep learning fueling more complex and larger scale models, proteochemometrics allows faster and higher quality computational models supporting the design, make, test cycle.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.