Nicholas A Vernice, Cem Meydan, Ebrahim Afshinnekoo, Christopher E Mason
{"title":"长期太空飞行和心血管系统。","authors":"Nicholas A Vernice, Cem Meydan, Ebrahim Afshinnekoo, Christopher E Mason","doi":"10.1093/pcmedi/pbaa022","DOIUrl":null,"url":null,"abstract":"<p><p>While early investigations into the physiological effects of spaceflight suggest the body's ability to reversibly adapt, the corresponding effects of long-term spaceflight (>6 months) are much less conclusive. Prolonged exposure to microgravity and radiation yields profound effects on the cardiovascular system, including a massive cephalad fluid translocation and altered arterial pressure, which attenuate blood pressure regulatory mechanisms and increase cardiac output. Also, central venous pressure decreases as a result of the loss of venous compression. The stimulation of baroreceptors by the cephalad shift results in an approximately 10%-15% reduction in plasma volume, with fluid translocating from the vascular lumen to the interstitium. Despite possible increases in cardiac workload, myocyte atrophy and notable, yet unexplained, alterations in hematocrit have been observed. Atrophy is postulated to result from shunting of protein synthesis from the endoplasmic reticulum to the mitochondria via mortalin-mediated action. While data are scarce regarding their causative agents, arrhythmias have been frequently reported, albeit sublethal, during both Russian and American expeditions, with QT interval prolongation observed in long, but not short duration, spaceflight. Exposure of the heart to the proton and heavy ion radiation of deep space has also been shown to result in coronary artery degeneration, aortic stiffness, carotid intima thickening via collagen-mediated action, accelerated atherosclerosis, and induction of a pro-inflammatory state. Upon return, long-term spaceflight frequently results in orthostatic intolerance and altered sympathetic responses, which can prove hazardous should any rapid mobilization or evacuation be required, and indicates that these cardiac risks should be especially monitored for future missions.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"3 4","pages":"284-291"},"PeriodicalIF":5.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/pcmedi/pbaa022","citationCount":"48","resultStr":"{\"title\":\"Long-term spaceflight and the cardiovascular system.\",\"authors\":\"Nicholas A Vernice, Cem Meydan, Ebrahim Afshinnekoo, Christopher E Mason\",\"doi\":\"10.1093/pcmedi/pbaa022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While early investigations into the physiological effects of spaceflight suggest the body's ability to reversibly adapt, the corresponding effects of long-term spaceflight (>6 months) are much less conclusive. Prolonged exposure to microgravity and radiation yields profound effects on the cardiovascular system, including a massive cephalad fluid translocation and altered arterial pressure, which attenuate blood pressure regulatory mechanisms and increase cardiac output. Also, central venous pressure decreases as a result of the loss of venous compression. The stimulation of baroreceptors by the cephalad shift results in an approximately 10%-15% reduction in plasma volume, with fluid translocating from the vascular lumen to the interstitium. Despite possible increases in cardiac workload, myocyte atrophy and notable, yet unexplained, alterations in hematocrit have been observed. Atrophy is postulated to result from shunting of protein synthesis from the endoplasmic reticulum to the mitochondria via mortalin-mediated action. While data are scarce regarding their causative agents, arrhythmias have been frequently reported, albeit sublethal, during both Russian and American expeditions, with QT interval prolongation observed in long, but not short duration, spaceflight. Exposure of the heart to the proton and heavy ion radiation of deep space has also been shown to result in coronary artery degeneration, aortic stiffness, carotid intima thickening via collagen-mediated action, accelerated atherosclerosis, and induction of a pro-inflammatory state. Upon return, long-term spaceflight frequently results in orthostatic intolerance and altered sympathetic responses, which can prove hazardous should any rapid mobilization or evacuation be required, and indicates that these cardiac risks should be especially monitored for future missions.</p>\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":\"3 4\",\"pages\":\"284-291\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/pcmedi/pbaa022\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbaa022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbaa022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Long-term spaceflight and the cardiovascular system.
While early investigations into the physiological effects of spaceflight suggest the body's ability to reversibly adapt, the corresponding effects of long-term spaceflight (>6 months) are much less conclusive. Prolonged exposure to microgravity and radiation yields profound effects on the cardiovascular system, including a massive cephalad fluid translocation and altered arterial pressure, which attenuate blood pressure regulatory mechanisms and increase cardiac output. Also, central venous pressure decreases as a result of the loss of venous compression. The stimulation of baroreceptors by the cephalad shift results in an approximately 10%-15% reduction in plasma volume, with fluid translocating from the vascular lumen to the interstitium. Despite possible increases in cardiac workload, myocyte atrophy and notable, yet unexplained, alterations in hematocrit have been observed. Atrophy is postulated to result from shunting of protein synthesis from the endoplasmic reticulum to the mitochondria via mortalin-mediated action. While data are scarce regarding their causative agents, arrhythmias have been frequently reported, albeit sublethal, during both Russian and American expeditions, with QT interval prolongation observed in long, but not short duration, spaceflight. Exposure of the heart to the proton and heavy ion radiation of deep space has also been shown to result in coronary artery degeneration, aortic stiffness, carotid intima thickening via collagen-mediated action, accelerated atherosclerosis, and induction of a pro-inflammatory state. Upon return, long-term spaceflight frequently results in orthostatic intolerance and altered sympathetic responses, which can prove hazardous should any rapid mobilization or evacuation be required, and indicates that these cardiac risks should be especially monitored for future missions.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.