生物膜模型在牙科治疗评估中的应用。

Q2 Dentistry Monographs in Oral Science Pub Date : 2021-01-01 Epub Date: 2020-12-21 DOI:10.1159/000510198
Sigrun Eick
{"title":"生物膜模型在牙科治疗评估中的应用。","authors":"Sigrun Eick","doi":"10.1159/000510198","DOIUrl":null,"url":null,"abstract":"<p><p>When analyzing the activity of antimicrobial agents, it should be considered that microorganisms mainly occur in biofilms. Data obtained for planktonic bacteria cannot be transferred non-critically to biofilms. Biofilm models should consider both the relevant microorganisms and the conditions present in the environment. The selection of the model depends on the question to be answered. In dentistry, single species, multispecies, or microcosms originating from saliva or dental biofilm are used to culture biofilms. Microorganism selection depends on the focus of the study, for example caries biofilms mostly include Streptococcus mutans, an endodontic biofilm consists mostly of Enterococcus faecalis, and defined anaerobes are used in periodontal/peri-implant biofilms. In contrast to single-species biofilm models in medicine, where the lowest concentration of the antimicrobial that kills microorganisms is measured, the common analyzed variables are counts of colony-forming units or the percentage of dead bacteria determined by confocal laser scanning microscopy after applying a differentiating stain. All the models are helpful to evaluate new antimicrobial treatment options. Conclusions regarding the antimicrobial activity tendency of the therapeutics can be drawn. However, there are limitations of the model and ultimately a new therapy has to be proven in randomized controlled clinical trials.</p>","PeriodicalId":35771,"journal":{"name":"Monographs in Oral Science","volume":"29 ","pages":"38-52"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biofilm Models for the Evaluation of Dental Treatment.\",\"authors\":\"Sigrun Eick\",\"doi\":\"10.1159/000510198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When analyzing the activity of antimicrobial agents, it should be considered that microorganisms mainly occur in biofilms. Data obtained for planktonic bacteria cannot be transferred non-critically to biofilms. Biofilm models should consider both the relevant microorganisms and the conditions present in the environment. The selection of the model depends on the question to be answered. In dentistry, single species, multispecies, or microcosms originating from saliva or dental biofilm are used to culture biofilms. Microorganism selection depends on the focus of the study, for example caries biofilms mostly include Streptococcus mutans, an endodontic biofilm consists mostly of Enterococcus faecalis, and defined anaerobes are used in periodontal/peri-implant biofilms. In contrast to single-species biofilm models in medicine, where the lowest concentration of the antimicrobial that kills microorganisms is measured, the common analyzed variables are counts of colony-forming units or the percentage of dead bacteria determined by confocal laser scanning microscopy after applying a differentiating stain. All the models are helpful to evaluate new antimicrobial treatment options. Conclusions regarding the antimicrobial activity tendency of the therapeutics can be drawn. However, there are limitations of the model and ultimately a new therapy has to be proven in randomized controlled clinical trials.</p>\",\"PeriodicalId\":35771,\"journal\":{\"name\":\"Monographs in Oral Science\",\"volume\":\"29 \",\"pages\":\"38-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monographs in Oral Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000510198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs in Oral Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000510198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 3

摘要

在分析抗菌药物的活性时,应考虑到微生物主要存在于生物膜中。浮游细菌获得的数据不能非关键地转移到生物膜上。生物膜模型应考虑相关微生物和环境中存在的条件。模型的选择取决于要回答的问题。在牙科中,来自唾液或牙齿生物膜的单一物种、多物种或微型生物被用来培养生物膜。微生物的选择取决于研究的重点,例如龋齿生物膜主要包括变形链球菌,牙髓生物膜主要由粪肠球菌组成,而牙周/种植体周围生物膜则使用明确的厌氧菌。与医学中的单物种生物膜模型相反,在单物种生物膜模型中,测量杀死微生物的最低浓度的抗菌剂,常见的分析变量是菌落形成单位的计数或在应用分化染色后通过共聚焦激光扫描显微镜确定的死细菌百分比。所有模型都有助于评估新的抗菌治疗方案。可以得出治疗药物抗菌活性趋势的结论。然而,该模型存在局限性,最终一种新的治疗方法必须在随机对照临床试验中得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biofilm Models for the Evaluation of Dental Treatment.

When analyzing the activity of antimicrobial agents, it should be considered that microorganisms mainly occur in biofilms. Data obtained for planktonic bacteria cannot be transferred non-critically to biofilms. Biofilm models should consider both the relevant microorganisms and the conditions present in the environment. The selection of the model depends on the question to be answered. In dentistry, single species, multispecies, or microcosms originating from saliva or dental biofilm are used to culture biofilms. Microorganism selection depends on the focus of the study, for example caries biofilms mostly include Streptococcus mutans, an endodontic biofilm consists mostly of Enterococcus faecalis, and defined anaerobes are used in periodontal/peri-implant biofilms. In contrast to single-species biofilm models in medicine, where the lowest concentration of the antimicrobial that kills microorganisms is measured, the common analyzed variables are counts of colony-forming units or the percentage of dead bacteria determined by confocal laser scanning microscopy after applying a differentiating stain. All the models are helpful to evaluate new antimicrobial treatment options. Conclusions regarding the antimicrobial activity tendency of the therapeutics can be drawn. However, there are limitations of the model and ultimately a new therapy has to be proven in randomized controlled clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monographs in Oral Science
Monographs in Oral Science Medicine-Medicine (all)
CiteScore
3.70
自引率
0.00%
发文量
21
期刊介绍: For two decades, ‘Monographs in Oral Science’ has provided a source of in-depth discussion of selected topics in the sciences related to stomatology. Senior investigators are invited to present expanded contributions in their fields of special expertise. The topics chosen are those which have generated a long-standing interest, and on which new conceptual insights or innovative biotechnology are making considerable impact. Authors are selected on the basis of having made lasting contributions to their chosen field and their willingness to share their findings with others.
期刊最新文献
Chapter 8: Risk Assessment: Considerations for Coronal Caries. Chapter 9.4: Operative Treatment and Monitoring of Coronal Caries in Daily Practice. Chapter 9.3: Current Concepts of Caries Removal in Daily Practice. Chapter 9.1: The Use of Fluorides in the Control of Coronal Caries. Chapter 6: Diagnostic Considerations regarding Coronal Caries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1