隧道:一个负担得起的,易于组装,和用户友好的台式斑马鱼游泳隧道。

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2021-02-01 Epub Date: 2021-01-12 DOI:10.1089/zeb.2020.1948
Jan Willem Bek, Adelbert De Clercq, Paul J Coucke, Andy Willaert
{"title":"隧道:一个负担得起的,易于组装,和用户友好的台式斑马鱼游泳隧道。","authors":"Jan Willem Bek,&nbsp;Adelbert De Clercq,&nbsp;Paul J Coucke,&nbsp;Andy Willaert","doi":"10.1089/zeb.2020.1948","DOIUrl":null,"url":null,"abstract":"<p><p>The popularity of zebrafish in both basic biological and biomedical research has led to an increased need for understanding their behavior. Locomotor behavior is an important outcome of different factors, such as specific genotypes or external stimuli that influence the nervous and musculoskeletal system. Locomotion can be studied by forced swimming in a swim tunnel, a device capable of generating a laminar water flow at different speeds in a chamber where zebrafish can be placed. However, commercially available swim tunnels are relatively expensive and in-house built systems are mostly presented without clear building instructions or proper validation procedures. In this study, we developed an alternative, cheap (<250 euro), and user-friendly, but customizable benchtop swim tunnel, called the \"<i>Zebrafish exercise-tunnel</i>\" (ZE-Tunnel). Detailed step-by-step instructions on how to construct the tunnel components, including the frame, mechanical, and electric components are given. The ZE-Tunnel was reliably used to exercise fish for prolonged periods and its performance was successfully validated by replicating previously published experiments on critical speed testing in zebrafish. Finally, implementation of behavioral video analysis using freely available motion-tracking software showed differences in swimming dynamics in the <i>Chihuahua</i> skeletal zebrafish mutant.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The ZE-Tunnel: An Affordable, Easy-to-Assemble, and User-Friendly Benchtop Zebrafish Swim Tunnel.\",\"authors\":\"Jan Willem Bek,&nbsp;Adelbert De Clercq,&nbsp;Paul J Coucke,&nbsp;Andy Willaert\",\"doi\":\"10.1089/zeb.2020.1948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The popularity of zebrafish in both basic biological and biomedical research has led to an increased need for understanding their behavior. Locomotor behavior is an important outcome of different factors, such as specific genotypes or external stimuli that influence the nervous and musculoskeletal system. Locomotion can be studied by forced swimming in a swim tunnel, a device capable of generating a laminar water flow at different speeds in a chamber where zebrafish can be placed. However, commercially available swim tunnels are relatively expensive and in-house built systems are mostly presented without clear building instructions or proper validation procedures. In this study, we developed an alternative, cheap (<250 euro), and user-friendly, but customizable benchtop swim tunnel, called the \\\"<i>Zebrafish exercise-tunnel</i>\\\" (ZE-Tunnel). Detailed step-by-step instructions on how to construct the tunnel components, including the frame, mechanical, and electric components are given. The ZE-Tunnel was reliably used to exercise fish for prolonged periods and its performance was successfully validated by replicating previously published experiments on critical speed testing in zebrafish. Finally, implementation of behavioral video analysis using freely available motion-tracking software showed differences in swimming dynamics in the <i>Chihuahua</i> skeletal zebrafish mutant.</p>\",\"PeriodicalId\":23872,\"journal\":{\"name\":\"Zebrafish\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zebrafish\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2020.1948\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2020.1948","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

斑马鱼在基础生物学和生物医学研究中的普及,导致人们越来越需要了解它们的行为。运动行为是不同因素的重要结果,如影响神经和肌肉骨骼系统的特定基因型或外部刺激。运动可以通过在游泳隧道中强迫游泳来研究,这是一种能够在一个可以放置斑马鱼的房间里以不同速度产生层流水流的装置。然而,商业上可用的游泳隧道相对昂贵,内部建造的系统大多没有明确的建筑说明或适当的验证程序。在这项研究中,我们开发了一种替代品,廉价的“斑马鱼运动隧道”(ZE-Tunnel)。详细的一步一步的说明如何构建隧道组件,包括框架,机械和电气组件给出。ZE-Tunnel可靠地用于长时间运动鱼类,并且通过复制先前发表的斑马鱼临界速度测试实验,成功验证了其性能。最后,使用免费的运动跟踪软件实施的行为视频分析显示,吉娃娃骨骼斑马鱼突变体在游泳动力学方面存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The ZE-Tunnel: An Affordable, Easy-to-Assemble, and User-Friendly Benchtop Zebrafish Swim Tunnel.

The popularity of zebrafish in both basic biological and biomedical research has led to an increased need for understanding their behavior. Locomotor behavior is an important outcome of different factors, such as specific genotypes or external stimuli that influence the nervous and musculoskeletal system. Locomotion can be studied by forced swimming in a swim tunnel, a device capable of generating a laminar water flow at different speeds in a chamber where zebrafish can be placed. However, commercially available swim tunnels are relatively expensive and in-house built systems are mostly presented without clear building instructions or proper validation procedures. In this study, we developed an alternative, cheap (<250 euro), and user-friendly, but customizable benchtop swim tunnel, called the "Zebrafish exercise-tunnel" (ZE-Tunnel). Detailed step-by-step instructions on how to construct the tunnel components, including the frame, mechanical, and electric components are given. The ZE-Tunnel was reliably used to exercise fish for prolonged periods and its performance was successfully validated by replicating previously published experiments on critical speed testing in zebrafish. Finally, implementation of behavioral video analysis using freely available motion-tracking software showed differences in swimming dynamics in the Chihuahua skeletal zebrafish mutant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1