加权基因共表达网络分析(WGCNA)在缺血性卒中中与微rna相关的关键途径和中心基因

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-04-20 DOI:10.1049/syb2.12016
Xiang Qu, Shuang Wu, Jinggui Gao, Zhenxiu Qin, Zhenhua Zhou, Jingli Liu
{"title":"加权基因共表达网络分析(WGCNA)在缺血性卒中中与微rna相关的关键途径和中心基因","authors":"Xiang Qu,&nbsp;Shuang Wu,&nbsp;Jinggui Gao,&nbsp;Zhenxiu Qin,&nbsp;Zhenhua Zhou,&nbsp;Jingli Liu","doi":"10.1049/syb2.12016","DOIUrl":null,"url":null,"abstract":"<p>Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA-seq data were analysed. Weighted gene co-expression network analysis (WGCNA) was used to screen the key micro-RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein-protein interactions network. Result: Upon investigation, 1185 up- and down-regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait-correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675812/pdf/","citationCount":"3","resultStr":"{\"title\":\"Weighted gene co expression network analysis (WGCNA) with key pathways and hub-genes related to micro RNAs in ischemic stroke\",\"authors\":\"Xiang Qu,&nbsp;Shuang Wu,&nbsp;Jinggui Gao,&nbsp;Zhenxiu Qin,&nbsp;Zhenhua Zhou,&nbsp;Jingli Liu\",\"doi\":\"10.1049/syb2.12016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA-seq data were analysed. Weighted gene co-expression network analysis (WGCNA) was used to screen the key micro-RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein-protein interactions network. Result: Upon investigation, 1185 up- and down-regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait-correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675812/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

缺血性中风(IS)是世界范围内导致死亡和残疾的主要原因之一。然而,IS中基因相互作用的具体机制和生物学功能尚不清楚。因此,有必要对IS进行更多的研究。数据集GSE110993包括20例缺血性卒中患者和20例对照标本建立两组,并分析原始RNA-seq数据。采用加权基因共表达网络分析(WGCNA)筛选关键微rna模块。关键基因的中心性通过模块隶属度(mm)和基因显著性(GS)来确定。通过京都议定书基因和基因组百科(KEGG)富集分析确定了关键通路,并通过蛋白-蛋白相互作用网络对关键基因进行了验证。结果:经调查,共收集到1185个上调和下调基因,并根据其与IS临床特征的相关程度分为三个模块,其中绿松石模块的性状相关性为0.77。通过GS和MM进一步鉴定了前140个基因。KEGG分析显示,在IS的发展过程中可能有两条途径。讨论:CXCL12和EIF2a可能是IS准确诊断和治疗的重要生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted gene co expression network analysis (WGCNA) with key pathways and hub-genes related to micro RNAs in ischemic stroke

Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA-seq data were analysed. Weighted gene co-expression network analysis (WGCNA) was used to screen the key micro-RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein-protein interactions network. Result: Upon investigation, 1185 up- and down-regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait-correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1