{"title":"非对称脉冲序列对顺磁固体中2H核磁共振谱分离四极和位移相互作用的研究","authors":"Takahiro Iijima , Shinobu Ohki , Masataka Tansho","doi":"10.1016/j.ssnmr.2020.101709","DOIUrl":null,"url":null,"abstract":"<div><p>Separated pure-quadrupole (PQ) and -shift (PS) spectra of <sup>2</sup><span>H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric </span><em>π</em><span>-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform<span>. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD</span></span><sub>3</sub>CO<sub>2</sub>)<sub>2</sub>⋅2H<sub>2</sub>O and paramagnetic Nd(CD<sub>3</sub>CO<sub>2</sub>)<sub>3</sub>⋅1.5H<sub>2</sub>O. Further, the dynamics of the D<sub>2</sub>O molecule and [Co(D<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup><span> ion in paramagnetic CoSiF</span><sub>6</sub>⋅6D<sub>2</sub>O was analyzed based on the temperature dependence of the separated spectra.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101709","citationCount":"2","resultStr":"{\"title\":\"Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences\",\"authors\":\"Takahiro Iijima , Shinobu Ohki , Masataka Tansho\",\"doi\":\"10.1016/j.ssnmr.2020.101709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Separated pure-quadrupole (PQ) and -shift (PS) spectra of <sup>2</sup><span>H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric </span><em>π</em><span>-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform<span>. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD</span></span><sub>3</sub>CO<sub>2</sub>)<sub>2</sub>⋅2H<sub>2</sub>O and paramagnetic Nd(CD<sub>3</sub>CO<sub>2</sub>)<sub>3</sub>⋅1.5H<sub>2</sub>O. Further, the dynamics of the D<sub>2</sub>O molecule and [Co(D<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup><span> ion in paramagnetic CoSiF</span><sub>6</sub>⋅6D<sub>2</sub>O was analyzed based on the temperature dependence of the separated spectra.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101709\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204020300710\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204020300710","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences
Separated pure-quadrupole (PQ) and -shift (PS) spectra of 2H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric π-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD3CO2)2⋅2H2O and paramagnetic Nd(CD3CO2)3⋅1.5H2O. Further, the dynamics of the D2O molecule and [Co(D2O)6]2+ ion in paramagnetic CoSiF6⋅6D2O was analyzed based on the temperature dependence of the separated spectra.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.