Ingeborg Kvivik, Tore Grimstad, Grete Jonsson, Jan T Kvaløy, Roald Omdal
{"title":"抗hmgb1自身抗体对克罗恩病患者疲劳的影响","authors":"Ingeborg Kvivik, Tore Grimstad, Grete Jonsson, Jan T Kvaløy, Roald Omdal","doi":"10.1177/17534259211014252","DOIUrl":null,"url":null,"abstract":"<p><p>Fatigue is common in all chronic inflammatory and autoimmune diseases. A conceptual model for understanding the biological basis of fatigue describes it as being a part of the sickness behaviour response generated by pro-inflammatory cytokines and other mediators. We hypothesised that the pro-inflammatory high mobility group box 1 (HMGB1) protein is a fatigue-inducing molecule and that auto-Abs against HMGB1 reduce fatigue. We measured Abs against disulphide (ds) HMGB1 and fully reduced (fr) HMGB1 in plasma from 57 patients with Crohn's disease. Fatigue was rated using the fatigue visual analogue scale (fVAS) and disease activity with faecal calprotectin, C-reactive protein and the Simple Endoscopic Score for Crohn's disease. Multivariable regression models identified anti-dsHMGB1 and anti-frHMGB1 Abs as the strongest contributing factors for fVAS scores (<i>B</i> = -29.10 (<i>P</i> = 0.01), <i>R</i><sup>2</sup> = 0.17, and <i>B</i> = -17.77 (<i>P</i> = 0.01), <i>R</i><sup>2</sup> = 0.17, respectively). Results indicate that anti-HMGB1 auto-Abs alleviate fatigue possibly by down-regulating HMGB1-induced sickness behaviour.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/17534259211014252","citationCount":"4","resultStr":"{\"title\":\"Anti-HMGB1 auto-Abs influence fatigue in patients with Crohn's disease.\",\"authors\":\"Ingeborg Kvivik, Tore Grimstad, Grete Jonsson, Jan T Kvaløy, Roald Omdal\",\"doi\":\"10.1177/17534259211014252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fatigue is common in all chronic inflammatory and autoimmune diseases. A conceptual model for understanding the biological basis of fatigue describes it as being a part of the sickness behaviour response generated by pro-inflammatory cytokines and other mediators. We hypothesised that the pro-inflammatory high mobility group box 1 (HMGB1) protein is a fatigue-inducing molecule and that auto-Abs against HMGB1 reduce fatigue. We measured Abs against disulphide (ds) HMGB1 and fully reduced (fr) HMGB1 in plasma from 57 patients with Crohn's disease. Fatigue was rated using the fatigue visual analogue scale (fVAS) and disease activity with faecal calprotectin, C-reactive protein and the Simple Endoscopic Score for Crohn's disease. Multivariable regression models identified anti-dsHMGB1 and anti-frHMGB1 Abs as the strongest contributing factors for fVAS scores (<i>B</i> = -29.10 (<i>P</i> = 0.01), <i>R</i><sup>2</sup> = 0.17, and <i>B</i> = -17.77 (<i>P</i> = 0.01), <i>R</i><sup>2</sup> = 0.17, respectively). Results indicate that anti-HMGB1 auto-Abs alleviate fatigue possibly by down-regulating HMGB1-induced sickness behaviour.</p>\",\"PeriodicalId\":13676,\"journal\":{\"name\":\"Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/17534259211014252\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innate Immunity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/17534259211014252\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259211014252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Anti-HMGB1 auto-Abs influence fatigue in patients with Crohn's disease.
Fatigue is common in all chronic inflammatory and autoimmune diseases. A conceptual model for understanding the biological basis of fatigue describes it as being a part of the sickness behaviour response generated by pro-inflammatory cytokines and other mediators. We hypothesised that the pro-inflammatory high mobility group box 1 (HMGB1) protein is a fatigue-inducing molecule and that auto-Abs against HMGB1 reduce fatigue. We measured Abs against disulphide (ds) HMGB1 and fully reduced (fr) HMGB1 in plasma from 57 patients with Crohn's disease. Fatigue was rated using the fatigue visual analogue scale (fVAS) and disease activity with faecal calprotectin, C-reactive protein and the Simple Endoscopic Score for Crohn's disease. Multivariable regression models identified anti-dsHMGB1 and anti-frHMGB1 Abs as the strongest contributing factors for fVAS scores (B = -29.10 (P = 0.01), R2 = 0.17, and B = -17.77 (P = 0.01), R2 = 0.17, respectively). Results indicate that anti-HMGB1 auto-Abs alleviate fatigue possibly by down-regulating HMGB1-induced sickness behaviour.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.