{"title":"动态高密度功能底物定位改善缺血性室性心动过速消融的疗效:感觉协议功能底物定位和其他功能定位技术。","authors":"Nikolaos Papageorgiou, Neil T Srinivasan","doi":"10.15420/aer.2020.28","DOIUrl":null,"url":null,"abstract":"<p><p>Post-infarct-related ventricular tachycardia (VT) occurs due to reentry over surviving fibres within ventricular scar tissue. The mapping and ablation of patients in VT remains a challenge when VT is poorly tolerated and in cases in which VT is non-sustained or not inducible. Conventional substrate mapping techniques are limited by the ambiguity of substrate characterisation methods and the variety of mapping tools, which may record signals differently based on their bipolar spacing and electrode size. Real world data suggest that outcomes from VT ablation remain poor in terms of freedom from recurrent therapy using conventional techniques. Functional substrate mapping techniques, such as single extrastimulus protocol mapping, identify regions of unmasked delayed potentials, which, by nature of their dynamic and functional components, may play a critical role in sustaining VT. These methods may improve substrate mapping of VT, potentially making ablation safer and more reproducible, and thereby improving the outcomes. Further large-scale studies are needed.</p>","PeriodicalId":8412,"journal":{"name":"Arrhythmia & Electrophysiology Review","volume":"10 1","pages":"38-44"},"PeriodicalIF":2.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/37/aer-10-38.PMC8076974.pdf","citationCount":"2","resultStr":"{\"title\":\"Dynamic High-density Functional Substrate Mapping Improves Outcomes in Ischaemic Ventricular Tachycardia Ablation: Sense Protocol Functional Substrate Mapping and Other Functional Mapping Techniques.\",\"authors\":\"Nikolaos Papageorgiou, Neil T Srinivasan\",\"doi\":\"10.15420/aer.2020.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-infarct-related ventricular tachycardia (VT) occurs due to reentry over surviving fibres within ventricular scar tissue. The mapping and ablation of patients in VT remains a challenge when VT is poorly tolerated and in cases in which VT is non-sustained or not inducible. Conventional substrate mapping techniques are limited by the ambiguity of substrate characterisation methods and the variety of mapping tools, which may record signals differently based on their bipolar spacing and electrode size. Real world data suggest that outcomes from VT ablation remain poor in terms of freedom from recurrent therapy using conventional techniques. Functional substrate mapping techniques, such as single extrastimulus protocol mapping, identify regions of unmasked delayed potentials, which, by nature of their dynamic and functional components, may play a critical role in sustaining VT. These methods may improve substrate mapping of VT, potentially making ablation safer and more reproducible, and thereby improving the outcomes. Further large-scale studies are needed.</p>\",\"PeriodicalId\":8412,\"journal\":{\"name\":\"Arrhythmia & Electrophysiology Review\",\"volume\":\"10 1\",\"pages\":\"38-44\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/37/aer-10-38.PMC8076974.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arrhythmia & Electrophysiology Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15420/aer.2020.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arrhythmia & Electrophysiology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15420/aer.2020.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Dynamic High-density Functional Substrate Mapping Improves Outcomes in Ischaemic Ventricular Tachycardia Ablation: Sense Protocol Functional Substrate Mapping and Other Functional Mapping Techniques.
Post-infarct-related ventricular tachycardia (VT) occurs due to reentry over surviving fibres within ventricular scar tissue. The mapping and ablation of patients in VT remains a challenge when VT is poorly tolerated and in cases in which VT is non-sustained or not inducible. Conventional substrate mapping techniques are limited by the ambiguity of substrate characterisation methods and the variety of mapping tools, which may record signals differently based on their bipolar spacing and electrode size. Real world data suggest that outcomes from VT ablation remain poor in terms of freedom from recurrent therapy using conventional techniques. Functional substrate mapping techniques, such as single extrastimulus protocol mapping, identify regions of unmasked delayed potentials, which, by nature of their dynamic and functional components, may play a critical role in sustaining VT. These methods may improve substrate mapping of VT, potentially making ablation safer and more reproducible, and thereby improving the outcomes. Further large-scale studies are needed.