监测血管正常化:线粒体抑制剂在乳腺癌中的新机会。

Oncoscience Pub Date : 2021-02-25 eCollection Date: 2021-01-01 DOI:10.18632/oncoscience.523
Silvana Mouron, Maria J Bueno, Manuel Muñoz, Miguel Quintela-Fandino
{"title":"监测血管正常化:线粒体抑制剂在乳腺癌中的新机会。","authors":"Silvana Mouron,&nbsp;Maria J Bueno,&nbsp;Manuel Muñoz,&nbsp;Miguel Quintela-Fandino","doi":"10.18632/oncoscience.523","DOIUrl":null,"url":null,"abstract":"<p><p>Preclinical evidence indicates the potential of targeting mitochondrial respiration as a therapeutic strategy. We previously demonstrated that mitochondrial inhibitors' efficacy was restricted to a metabolic context in which mitochondrial respiration was the predominant energy source, a situation achievable by inducing vascular normalization/hypoxia correction with antiangiogenics. Using molecular imaging, we showed how the same antiangiogenic agent may display different normalizing properties in patients with the same tumor type. This is of key importance, since patients experiencing normalization seem to get more benefit from standard chemotherapy combinations, and also could be eligible for combination with antimitochondrial agents. This scenario emphasizes the need for monitoring vascular normalization in order to optimize the use of antiangiogenics. We have also proposed a method to evaluate anti-mitochondrial agents' pharmacodynamics; despite promising accuracy in animal studies the clinical results were inconclusive, highlighting the need for research in this field. Regarding patients that respond to antiangiogenics increasing vessel abnormality, in this case an immunosuppressive tumor microenvironment is generated. Whether anti-mitochondrial agents can positively modulate the activity of T effector cell subpopulations remains an area of active research. Our research sheds light on the importance of refining the use of antiangiogenics, highlighting the relevance of tracing vascular normalization as a potential biomarker for antiangiogenics to assist patient-tailored medicine and exploring the role of mitochondrial inhibitors in the context of vascular normalization and correction of hypoxia.</p>","PeriodicalId":19508,"journal":{"name":"Oncoscience","volume":"8 ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018703/pdf/","citationCount":"2","resultStr":"{\"title\":\"Monitoring vascular normalization: new opportunities for mitochondrial inhibitors in breast cancer.\",\"authors\":\"Silvana Mouron,&nbsp;Maria J Bueno,&nbsp;Manuel Muñoz,&nbsp;Miguel Quintela-Fandino\",\"doi\":\"10.18632/oncoscience.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preclinical evidence indicates the potential of targeting mitochondrial respiration as a therapeutic strategy. We previously demonstrated that mitochondrial inhibitors' efficacy was restricted to a metabolic context in which mitochondrial respiration was the predominant energy source, a situation achievable by inducing vascular normalization/hypoxia correction with antiangiogenics. Using molecular imaging, we showed how the same antiangiogenic agent may display different normalizing properties in patients with the same tumor type. This is of key importance, since patients experiencing normalization seem to get more benefit from standard chemotherapy combinations, and also could be eligible for combination with antimitochondrial agents. This scenario emphasizes the need for monitoring vascular normalization in order to optimize the use of antiangiogenics. We have also proposed a method to evaluate anti-mitochondrial agents' pharmacodynamics; despite promising accuracy in animal studies the clinical results were inconclusive, highlighting the need for research in this field. Regarding patients that respond to antiangiogenics increasing vessel abnormality, in this case an immunosuppressive tumor microenvironment is generated. Whether anti-mitochondrial agents can positively modulate the activity of T effector cell subpopulations remains an area of active research. Our research sheds light on the importance of refining the use of antiangiogenics, highlighting the relevance of tracing vascular normalization as a potential biomarker for antiangiogenics to assist patient-tailored medicine and exploring the role of mitochondrial inhibitors in the context of vascular normalization and correction of hypoxia.</p>\",\"PeriodicalId\":19508,\"journal\":{\"name\":\"Oncoscience\",\"volume\":\"8 \",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018703/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncoscience.523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

临床前证据表明靶向线粒体呼吸作为一种治疗策略的潜力。我们之前已经证明,线粒体抑制剂的功效仅限于线粒体呼吸是主要能量来源的代谢环境,这种情况可以通过诱导血管正常化/抗血管生成的缺氧纠正来实现。利用分子成像,我们展示了相同的抗血管生成药物如何在相同肿瘤类型的患者中显示不同的正常化特性。这是至关重要的,因为经历正常化的患者似乎从标准化疗组合中获益更多,并且也有资格与抗线粒体药物联合使用。这种情况强调了监测血管正常化的必要性,以便优化抗血管生成药物的使用。我们还提出了一种评估抗线粒体药物药效学的方法;尽管在动物研究中有希望的准确性,但临床结果是不确定的,突出了该领域研究的必要性。对于抗血管生成药物反应增加血管异常的患者,在这种情况下会产生免疫抑制的肿瘤微环境。抗线粒体药物是否能积极调节T效应细胞亚群的活性仍然是一个活跃的研究领域。我们的研究揭示了细化抗血管生成使用的重要性,强调了追踪血管正常化作为抗血管生成的潜在生物标志物的相关性,以协助患者量身定制药物,并探索线粒体抑制剂在血管正常化和缺氧纠正中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring vascular normalization: new opportunities for mitochondrial inhibitors in breast cancer.

Preclinical evidence indicates the potential of targeting mitochondrial respiration as a therapeutic strategy. We previously demonstrated that mitochondrial inhibitors' efficacy was restricted to a metabolic context in which mitochondrial respiration was the predominant energy source, a situation achievable by inducing vascular normalization/hypoxia correction with antiangiogenics. Using molecular imaging, we showed how the same antiangiogenic agent may display different normalizing properties in patients with the same tumor type. This is of key importance, since patients experiencing normalization seem to get more benefit from standard chemotherapy combinations, and also could be eligible for combination with antimitochondrial agents. This scenario emphasizes the need for monitoring vascular normalization in order to optimize the use of antiangiogenics. We have also proposed a method to evaluate anti-mitochondrial agents' pharmacodynamics; despite promising accuracy in animal studies the clinical results were inconclusive, highlighting the need for research in this field. Regarding patients that respond to antiangiogenics increasing vessel abnormality, in this case an immunosuppressive tumor microenvironment is generated. Whether anti-mitochondrial agents can positively modulate the activity of T effector cell subpopulations remains an area of active research. Our research sheds light on the importance of refining the use of antiangiogenics, highlighting the relevance of tracing vascular normalization as a potential biomarker for antiangiogenics to assist patient-tailored medicine and exploring the role of mitochondrial inhibitors in the context of vascular normalization and correction of hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IPIAD- an augmentation regimen added to standard treatment of pancreatic ductal adenocarcinoma using already-marketed repurposed drugs irbesartan, pyrimethamine, itraconazole, azithromycin, and dapsone IPIAD- an augmentation regimen added to standard treatment of pancreatic ductal adenocarcinoma using already-marketed repurposed drugs irbesartan, pyrimethamine, itraconazole, azithromycin, and dapsone Cancer drug development yesterday, today and tomorrow. Adenoid cystic carcinoma of the head and neck - treatment strategies of a highly malignant tumor with variable localizations. Kinase-targeted therapy in subsets of colorectal cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1