Shinji Tarumi, Wataru Takeuchi, George Chalkidis, Salvador Rodriguez-Loya, Junichi Kuwata, Michael Flynn, Kyle M Turner, Farrant H Sakaguchi, Charlene Weir, Heidi Kramer, David E Shields, Phillip B Warner, Polina Kukhareva, Hideyuki Ban, Kensaku Kawamoto
{"title":"利用人工智能改善慢性病护理:2 型糖尿病药物治疗决策支持的方法与应用》。","authors":"Shinji Tarumi, Wataru Takeuchi, George Chalkidis, Salvador Rodriguez-Loya, Junichi Kuwata, Michael Flynn, Kyle M Turner, Farrant H Sakaguchi, Charlene Weir, Heidi Kramer, David E Shields, Phillip B Warner, Polina Kukhareva, Hideyuki Ban, Kensaku Kawamoto","doi":"10.1055/s-0041-1728757","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI.</p><p><strong>Methods: </strong>Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results.</p><p><strong>Results: </strong>The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah.</p><p><strong>Conclusion: </strong>A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"60 S 01","pages":"e32-e43"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/6d/10-1055-s-0041-1728757.PMC8294941.pdf","citationCount":"0","resultStr":"{\"title\":\"Leveraging Artificial Intelligence to Improve Chronic Disease Care: Methods and Application to Pharmacotherapy Decision Support for Type-2 Diabetes Mellitus.\",\"authors\":\"Shinji Tarumi, Wataru Takeuchi, George Chalkidis, Salvador Rodriguez-Loya, Junichi Kuwata, Michael Flynn, Kyle M Turner, Farrant H Sakaguchi, Charlene Weir, Heidi Kramer, David E Shields, Phillip B Warner, Polina Kukhareva, Hideyuki Ban, Kensaku Kawamoto\",\"doi\":\"10.1055/s-0041-1728757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI.</p><p><strong>Methods: </strong>Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results.</p><p><strong>Results: </strong>The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah.</p><p><strong>Conclusion: </strong>A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.</p>\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\"60 S 01\",\"pages\":\"e32-e43\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/6d/10-1055-s-0041-1728757.PMC8294941.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1728757\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0041-1728757","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
目的:人工智能(AI),包括预测分析,在改善对发病率和死亡率较高的常见慢性病的护理方面具有巨大潜力。然而,实现这一愿景仍面临许多挑战。本项目的目标是开发和应用利用人工智能加强慢性病护理的方法:方法:利用 27904 名糖尿病患者的数据集,开发并验证了生成治疗路径图的分析方法,治疗路径图由预测替代治疗策略实现护理目标可能性的模型组成。通过将预测模型封装在 OpenCDS Web 服务模块中,并通过基于 FHIR(快速医疗保健互操作性资源上的可替代医疗应用和可重用技术)的 SMART 网络仪表板提供模型输出,开发出了与电子健康记录(EHR)集成的人工智能驱动临床决策支持系统(CDSS)。该 CDSS 使临床医生和患者能够查看相关的患者参数、选择治疗目标,并根据预测结果查看替代治疗策略:结果:所提出的分析方法在预测准确性方面优于以往的机器学习算法。该 CDSS 成功与犹他大学的 Epic EHR 集成:通过基于标准的互操作性框架,开发了基于预测分析的 CDSS,并成功与 EHR 集成。所使用的方法有可能应用于许多其他慢性疾病,从而将人工智能驱动的 CDSS 带到护理点。
Leveraging Artificial Intelligence to Improve Chronic Disease Care: Methods and Application to Pharmacotherapy Decision Support for Type-2 Diabetes Mellitus.
Objectives: Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI.
Methods: Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results.
Results: The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah.
Conclusion: A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.